@article{HofmannBraunPozgajetal.2014, author = {Hofmann, Sebastian and Braun, Attila and Pozgaj, Rastislav and Morowski, Martina and V{\"o}gtle, Timo and Nieswandt, Bernhard}, title = {Mice lacking the SLAM family member CD84 display unaltered platelet function in hemostasis and thrombosis}, series = {PLoS One}, volume = {9}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0115306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126477}, pages = {e115306}, year = {2014}, abstract = {Background Platelets are anuclear cell fragments derived from bone marrow megakaryocytes that safeguard vascular integrity by forming thrombi at sites of vascular injury. Although the early events of thrombus formation—platelet adhesion and aggregation—have been intensively studied, less is known about the mechanisms and receptors that stabilize platelet-platelet interactions once a thrombus has formed. One receptor that has been implicated in this process is the signaling lymphocyte activation molecule (SLAM) family member CD84, which can undergo homophilic interactions and becomes phosphorylated upon platelet aggregation. Objective The role of CD84 in platelet physiology and thrombus formation was investigated in CD84-deficient mice. Methods and Results We generated CD84-deficient mice and analyzed their platelets in vitro and in vivo. \(Cd84^{-/-}\) platelets exhibited normal activation and aggregation responses to classical platelet agonists. Furthermore, CD84 deficiency did not affect integrin-mediated clot retraction and spreading of activated platelets on fibrinogen. Notably, also the formation of stable three-dimensional thrombi on collagen-coated surfaces under flow ex vivo was unaltered in the blood of \(Cd84^{-/-}\) mice. In vivo, \(Cd84^{-/-}\) mice exhibited unaltered hemostatic function and arterial thrombus formation. Conclusion These results show that CD84 is dispensable for thrombus formation and stabilization, indicating that its deficiency may be functionally compensated by other receptors or that it may be important for platelet functions different from platelet-platelet interactions.}, language = {en} } @article{PoppThielmanNieswandtetal.2015, author = {Popp, Michael and Thielman, Ina and Nieswandt, Bernhard and Stegner, David}, title = {Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5)}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0133429}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125724}, pages = {e0133429}, year = {2015}, abstract = {Integrin αIIbβ3 plays a central role in the adhesion and aggregation of platelets and thus is essential for hemostasis and thrombosis. Integrin activation requires the transmission of a signal from the small cytoplasmic tails of the α or β subunit to the large extracellular domains resulting in conformational changes of the extracellular domains to enable ligand binding. Hydrogen peroxide-inducible clone-5 (Hic-5), a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic tails. Previous studies suggested Hic-5 as a novel regulator of integrin αIIbβ3 activation and platelet aggregation in mice. To assess this in more detail, we generated Hic-5-null mice and analyzed activation and aggregation of their platelets in vitro and in vivo. Surprisingly, lack of Hic-5 had no detectable effect on platelet integrin activation and function in vitro and in vivo under all tested conditions. These results indicate that Hic-5 is dispensable for integrin αIIbβ3 activation and consequently for arterial thrombosis and hemostasis in mice.}, language = {en} }