@article{HackerOttSchmidtetal.1986, author = {Hacker, J{\"o}rg and Ott, M. and Schmidt, G. and Hull, R. and Goebel, W.}, title = {Molecular cloning of the F8 fimbrial antigen from Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59391}, year = {1986}, abstract = {The genetic determinant coding for the Pspecific F8 fimbriae was cloned from · the chromosome of the Escherichia coli wild-type strain 2980 (018: K5: H5: FlC, F8). The F8 determinant was further subcloned into the Pstl site of pBR322 and a restriction map was established. In a Southern hybridization experiment identity between the chromosomally encoded F8 determinant of 2980 and its cloned Counterpart was demonstrated. The cloned F8 fimbri{\"a}e and those of the wild type strain consist of a protein subunit of nearly 20 kDa. F8 fimbriated strains were agglutinated by an F8 polyclonal antiserum, caused mannose-resistant hemagglutination and attached to human uroepi thellal cells. The cloned F8 determinant was weil expressed in a variety of host strains.}, subject = {Infektionsbiologie}, language = {en} } @article{OttHackerSchmolletal.1986, author = {Ott, M. and Hacker, J{\"o}rg and Schmoll, T. and Jarchau, T. and Korhonen, T. K. and Goebel, W}, title = {Analysis of the genetic determinants coding for the S fimbrial adhesin (sfa) in different Escherichia coli strains causing meningitis or urinary tract infections}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59432}, year = {1986}, abstract = {Recently we have described the molecular cloning of the genetic determinant coding for the S-fimbrial adhesin (Sfa), a sialic acid-recognizing pilus frequently found among extraintestinal Eschenchili coli isolates. Fimbriae from the resulting Sfa + E. coli K-12 clone were isolated, and an Sfa-specific antiserum was prepared. Western blots indicate that S fimbriae isolated from different uropathogenic and meningitis-associated E. coli strains, including 083:Kl isolates, were serologically related. The Sfa-specific antibodies did not cross-react with P fimbriae, but did cross-react with FlC fimbriae. Furthermore the sja+ recombinant DNAs and some cloned s/a-flanking regions were used as probes in Southem experiments. Chromosomal DNAs isolated from 018:Kl and 083:Kl meningitis strains with and without S fimbriae and from uropathogenic 06:K + strains were hybridized against these sfa-specific probes. Only one copy of the sfa determinant was identified on the chromosome of these strains. No sfa-specific sequences were observed on the chromosome of E. coli K-12 strains and an 07:Kl isolate. With the exception of small alterations in the sfa-coding region the genetic determinants for S fimbriae were identical in uropathogenic 06:K + and meningitis 018:Kl and 083:Kl strains. The sfa determinant was also detected on the chromosome of Kl isolates with an Sfa-negative phenotype, and specific cross-hybridization signals were visible after blotting against FlC-specific DNA. In addition homology among the different strains was observed in the sfa-flanking regions.}, subject = {Infektionsbiologie}, language = {en} } @article{OttSchmollGoebeletal.1987, author = {Ott, M. and Schmoll, T. and Goebel, W. and Van Die, I. and Hacker, J{\"o}rg}, title = {Comparison of the genetic determinant coding for the S-fimbrial adhesin (sfa) of Escherichia coli to other chromosomally encoded fimbrial determinants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59499}, year = {1987}, abstract = {DNA probes specific for different regions of the S-fimbrial adhesin (sja) determinant were constructed and hybridized with DNA sequences coding for P (F8 and F13), mannose-sensitive hemagglutinating type 1 (FlA), and FlC fimbriae. While the sfa and F1C DNA determinants exhibited homology along their entire lengths, the P-fimbrial and type 1-fimbrial determinants exhibited homology to regions of the sfa duster responsible for the control of transcription and, to a minor extent, to regions coding for proteins involved in biogenesis and/or adhesion of the fimbriae and for the N-terminal part of the fimbrillin subunit.}, subject = {Infektionsbiologie}, language = {en} } @article{OttHoschuetzkyJannetal.1988, author = {Ott, M. and Hosch{\"u}tzky, H. and Jann, K. and Van Die, I. and Hacker, J{\"o}rg}, title = {Gene clusters for S fimbrial adhesin (sfa) and F1C Fimbriae (foc) of Escherichia coli: Comparative aspects of structure and function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59519}, year = {1988}, abstract = {Fimbrial 8dhesins en8ble b8cteria to 8ttach t9 eucaryotic ceU~. The genetic determin8nts for S fimbrial 8dhesins (sja) an.d for FlC ("pseudotype I") fimbri8e ifoc) were compared. Sfa and FlC represent functionally distinct 8dbesins in tbeir receptor specificities. Nevertheless, 8 high degree of bomology between both determin8nts was found on the basis of DNA-DNA hybridizations. Characteristic difl'erences in the restriCtion maps of tbe corresponding gene clusters, bowever, were visible in regions coding for the fimbrial subunits and for the S-specific 8dhesin. While a plasmid carrying the geneiic deternlinant for FlC fimbri8e was 8ble to complement transposon-induced sfa mutants, 8 plasmid carrying tbe genetic determin8nt for 8 tbird 8dht\$in type, termed P fimbriae, was un8ble to do so. Proximal sfa-specific sequences carrying the S fimbrial st'"uctural gene were fused to sequences representing tbe di\$tal part of the foc gene cluster to form 8 hybrid cluster, and tbe foc proxim~ region coding for tbe structural protein was Iigated to sfa distal sequences to form 8 second hybrid. Botb hybrid clones produced intact fimbriae. Anti-FlC monoclonal8ntibodies (MAbs) only recognized clones which produced FlC fimbriae, and an ~ti-S 8dhesin MAb marked clones whicb expressed the S adhesin. Bowever, one of four other anti-S fimbri8e-specific MAbs reacted witb both fimbrial structures, S and FlC, indicating 8 common epitope on both antigens. The results presented bere ~upport tbe view th8t sfa and foc determinants code for fimbri8e tb8t 8re simil8r in several aspects, wbile the P fimbri8e are members of 8 more distantly rel8ted group.}, subject = {Infektionsbiologie}, language = {en} } @article{KrallmannWenzelOttHackeretal.1989, author = {Krallmann-Wenzel, U. and Ott, M. and Hacker, J{\"o}rg and Schmidt, G}, title = {Chromosomal mapping of genes encoding mannose-sensitive (type I) and mannose-resistant F8(P) fimbriae of Escherichia coli O18:K5:H5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59545}, year = {1989}, abstract = {DNA hybridization experiments demonstrated that the gene clusters encoding the F8 fimbriae (fei) as well as the type I fimbriae (pi/) exist in a single copy on the chromosome of E. coli 018:K5 strain 2980. In conjugation experiments with appropriate donors, the chromosomal site of these gene clusters was determined. The pil genes were mapped close to the gene clusters thr and Jeu controlling the biosynthesis of threonine and leucine, respectively. The fei genes were found to be located close to the galactose operon (gal) between the position 17 and 21 of the E. coli chromosomallinkage map.}, subject = {Infektionsbiologie}, language = {en} } @article{SchmollOttOugedaetal.1990, author = {Schmoll, T. and Ott, M. and Ougeda, B. and Hacker, J{\"o}rg}, title = {Use of a wild-type gene fusion to determine the influence of environmental conditions on expression of the S fimbrial adhesin in an Escherichia coli pathogen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59625}, year = {1990}, abstract = {S fimbrial adhesins (Sfa) enable pathogenic Escherichia coli strains to bind to sialic acid-containing eucaryotic receptor molecules. In order to determine the inftuence of culture conditions on the expression of the sfa determinant in a wild-type strain, we fused the gene lacZ, coding for the enzyme ß-galactosidase, to the sfaA gene, responsible for the major protein subunit of S fimbriae. By using a plasmid which carries an R6K origin, the sfaA-Iac hybrid construct was site-specifically integrated into the chromosome of the uropathogenic E. coli strain S36WT. The expression of lacZ, which was under the control of the sfa wild-type promoters, was now equivalent to the sfa expression of strain S36WT. With the help of this particular wild-type construct, it was demonstrated that the sfa determinant is better expressed on solid media than in liquid broth. The growth rate bad a strong inftuence on Sfa expression under aerobic but not under anaerobic conditions. Production of Sfa was further regulated by catabolite repression, osmolarity, and temperature.}, subject = {Infektionsbiologie}, language = {en} } @article{BenderOttMarreetal.1990, author = {Bender, L. and Ott, M. and Marre, R. and Hacker, J{\"o}rg}, title = {Genome analysis of Legionella spp. by orthogonal field alternation gel electrophoresis (OFAGE)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59657}, year = {1990}, abstract = {Various Legionella isolates from different sources and origins were analysed by orthogonal field alternation gel electrophoresis of Not I cleaved genomic DNA. The genome of L pneumophila Philadelphia I, the original isolate of the epidemics in 1976, exhibits only five Not I fragments. Two virulent derivatives. derived from L pneumophila Philadelphia I. which were obtained by prolonged passage on artificial cuhure media, did not differ from their isogenic virulent strain according the Not I fragment pattern. By summing the lengths of the Notl fragments, the genome size of L. pneumophila Philadelphia I was calculated as approximately 3.9 Mb. Environmental L pneumophila strains exhibited different Not I pattems, as did Legionella strains not belongi'ng to the species pneumophila. The usefulness of DNA long range mapping of Legionella ssp. with Notl for epidemiology and evaluation of their evolutionary rela· tionships is discussed.}, subject = {Infektionsbiologie}, language = {en} } @article{SchmollMorschhaeuserOttetal.1990, author = {Schmoll, T. and Morschh{\"a}user, J. and Ott, M. and Ludwig, B. and Van Die, I. and Hacker, J{\"o}rg}, title = {Complete genetic organization and functional aspects of the Escherichia coli S fimbrial adhesin determinant: nucleotide sequence of the genes sfaB, C, D, E, F.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59661}, year = {1990}, abstract = {The S fimbrial adhesin (sfa) determinant of E. co/i comprises nine genes situated on a stretch of 7.9 kilobases (kb) DNA. Here the nucleotide sequence of the genes sfa B and sfaC situated proximal to the main structural gene sfaA is described. Sfa-LacZ fusions show that the two genes are transcribed in opposite directions. The isolation of mutants in the proximal region of the sfa gene cluster, the construction of sfa-phoA gene fusions and subsequent transcomplementation sturlies indicated that the genes sfaB and sfaC play a role in regulation of the sfa determinant. ln addition the nucleotide sequence of the genes sfa D, sfa E and sfa F situated between the genes sfaA and sfaG responsible for S subunit proteins, were determined. lt is suggested that these genes are involved in transport and assembly of fimbrial subunits. Thus the entire genetic organization of the sfa determinant is presented and compared with the gene clusters coding for P fimbriae (pap), F1 C fimbriae (foc) and type I fimbriae ( fim). The evolutionary relationship of fimbrial adhesin determinants is discussed.}, subject = {Infektionsbiologie}, language = {en} } @article{HackerBenderOttetal.1990, author = {Hacker, J{\"o}rg and Bender, L. and Ott, M. and Wingeder, J. and Lund, B. and Marre, R. and Goebel, W.}, title = {Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vivo and in vitro in various extraintestinal Escherichia coli isolates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59608}, year = {1990}, abstract = {No abstract available}, subject = {Infektionsbiologie}, language = {en} } @article{OttBenderBlumetal.1991, author = {Ott, M. and Bender, L. and Blum, G. and Schmittroth, M. and Achtmann, M. and Tsch{\"a}pe, H. and Hacker, J{\"o}rg}, title = {Virulence patterns and long range mapping of extraintestinal Escherichia coli K1, K5 and K100 isolates: Use of pulse field gel electrophoresis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59738}, year = {1991}, abstract = {A total of 127 extraintestinal Escherichia coli strains of the capsule serotypes Kl, KS, and KlOO from human and animal sources were analyzed for DNA sequences specific for the genes for various adhesins (P fimbriae fpap] and P-related sequences fprs], S fimbriae [s/a)/FlC fimbriae [foc], and type I fimbriae lfim]), aerobactin (aer), and hemolysin (hly). The expression of corresponding virulence factors was also tested. Twenty-four selected strains were analyzed by long-range DNA mapping to evaluate their genetic relationships. DNA sequences for the adhesins were often found in strains not expressing them, while strains with hemolysin and aerobactin genes usually did express them. Different isolates of the same serotype orten expressed different virulence patterns. The use of virulence-associated gene probes for Southern hybridization with genomic DNA fragments separated by pulsed-field gel electrophoresis revealed that a highly heterogeneous restriction fragment length and hybridization pattern existed even within strains of the same serotype. Long-range DNA mapping is therefore useful for the evaluation of genetic relatedness among individual isolates and facilitates the performance of .precise molecular epidemiology.}, subject = {Infektionsbiologie}, language = {en} }