@article{DischingerHeckelBischleretal.2021, author = {Dischinger, Ulrich and Heckel, Tobias and Bischler, Thorsten and Hasinger, Julia and K{\"o}nigsrainer, Malina and Schmitt-B{\"o}hrer, Angelika and Otto, Christoph and Fassnacht, Martin and Seyfried, Florian and Hankir, Mohammed Khair}, title = {Roux-en-Y gastric bypass and caloric restriction but not gut hormone-based treatments profoundly impact the hypothalamic transcriptome in obese rats}, series = {Nutrients}, volume = {14}, journal = {Nutrients}, number = {1}, issn = {2072-6643}, doi = {10.3390/nu14010116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252392}, year = {2021}, abstract = {Background: The hypothalamus is an important brain region for the regulation of energy balance. Roux-en-Y gastric bypass (RYGB) surgery and gut hormone-based treatments are known to reduce body weight, but their effects on hypothalamic gene expression and signaling pathways are poorly studied. Methods: Diet-induced obese male Wistar rats were randomized into the following groups: RYGB, sham operation, sham + body weight-matched (BWM) to the RYGB group, osmotic minipump delivering PYY3-36 (0.1 mg/kg/day), liraglutide s.c. (0.4 mg/kg/day), PYY3-36 + liraglutide, and saline. All groups (except BWM) were kept on a free choice of high- and low-fat diets. Four weeks after interventions, hypothalami were collected for RNA sequencing. Results: While rats in the RYGB, BWM, and PYY3-36 + liraglutide groups had comparable reductions in body weight, only RYGB and BWM treatment had a major impact on hypothalamic gene expression. In these groups, hypothalamic leptin receptor expression as well as the JAK-STAT, PI3K-Akt, and AMPK signaling pathways were upregulated. No significant changes could be detected in PYY3-36 + liraglutide-, liraglutide-, and PYY-treated groups. Conclusions: Despite causing similar body weight changes compared to RYGB and BWM, PYY3-36 + liraglutide treatment does not impact hypothalamic gene expression. Whether this striking difference is favorable or unfavorable to metabolic health in the long term requires further investigation.}, language = {en} } @article{HankirRotzingerNordbecketal.2021, author = {Hankir, Mohammed K. and Rotzinger, Laura and Nordbeck, Arno and Corteville, Caroline and Dischinger, Ulrich and Knop, Juna-Lisa and Hoffmann, Annett and Otto, Christoph and Seyfried, Florian}, title = {Leptin receptors are not required for Roux-en-Y gastric bypass surgery to normalize energy and glucose homeostasis in rats}, series = {Nutrients}, volume = {13}, journal = {Nutrients}, number = {5}, issn = {2072-6643}, doi = {10.3390/nu13051544}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239550}, year = {2021}, abstract = {Sensitization to the adipokine leptin is a promising therapeutic strategy against obesity and its comorbidities and has been proposed to contribute to the lasting metabolic benefits of Roux-en-Y gastric bypass (RYGB) surgery. We formally tested this idea using Zucker fatty fa/fa rats as an established genetic model of obesity, glucose intolerance, and fatty liver due to leptin receptor deficiency. We show that the changes in body weight in these rats following RYGB largely overlaps with that of diet-induced obese Wistar rats with intact leptin receptors. Further, food intake and oral glucose tolerance were normalized in RYGB-treated Zucker fatty fa/fa rats to the levels of lean Zucker fatty fa/+ controls, in association with increased glucagon-like peptide 1 (GLP-1) and insulin release. In contrast, while fatty liver was also normalized in RYGB-treated Zucker fatty fa/fa rats, their circulating levels of the liver enzyme alanine aminotransferase (ALT) remained elevated at the level of obese Zucker fatty fa/fa controls. These findings suggest that the leptin system is not required for the normalization of energy and glucose homeostasis associated with RYGB, but that its potential contribution to the improvements in liver health postoperatively merits further investigation.}, language = {en} }