@article{EwaldGlotzbachSchoonGerdesetal.2014, author = {Ewald, Heike and Glotzbach-Schoon, Evelyn and Gerdes, Antje B. M. and Andreatta, Marta and M{\"u}ller, Mathias and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {Delay and trace fear conditioning in a complex virtual learning environment - neural substrates of extinction}, series = {Frontiers in Human Neuroscience}, volume = {8}, journal = {Frontiers in Human Neuroscience}, number = {323}, issn = {1662-5161}, doi = {10.3389/fnhum.2014.00323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116230}, year = {2014}, abstract = {Extinction is an important mechanism to inhibit initially acquired fear responses. There is growing evidence that the ventromedial prefrontal cortex (vmPFC) inhibits the amygdala and therefore plays an important role in the extinction of delay fear conditioning. To our knowledge, there is no evidence on the role of the prefrontal cortex in the extinction of trace conditioning up to now. Thus, we compared brain structures involved in the extinction of human delay and trace fear conditioning in a between-subjects-design in an fMRI study. Participants were passively guided through a virtual environment during learning and extinction of conditioned fear. Two different lights served as conditioned stimuli (CS); as unconditioned stimulus (US) a mildly painful electric stimulus was delivered. In the delay conditioning group (DCG) the US was administered with offset of one light (CS+), whereas in the trace conditioning group (TCG) the US was presented 4s after CS+ offset. Both groups showed insular and striatal activation during early extinction, but differed in their prefrontal activation. The vmPFC was mainly activated in the DCG, whereas the TCG showed activation of the dorsolateral prefrontal cortex (dlPFC) during extinction. These results point to different extinction processes in delay and trace conditioning. VmPFC activation during extinction of delay conditioning might reflect the inhibition of the fear response. In contrast, dlPFC activation during extinction of trace conditioning may reflect modulation of working memory processes which are involved in bridging the trace interval and hold information in short term memory.}, language = {en} } @article{GromerMadeiraGastetal.2018, author = {Gromer, Daniel and Madeira, Oct{\´a}via and Gast, Philipp and Nehfischer, Markus and Jost, Michael and M{\"u}ller, Mathias and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {Height Simulation in a Virtual Reality CAVE System: Validity of Fear Responses and Effects of an Immersion Manipulation}, series = {Frontiers in Human Neuroscience}, volume = {12}, journal = {Frontiers in Human Neuroscience}, number = {372}, issn = {1662-5161}, doi = {10.3389/fnhum.2018.00372}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196113}, year = {2018}, abstract = {Acrophobia is characterized by intense fear in height situations. Virtual reality (VR) can be used to trigger such phobic fear, and VR exposure therapy (VRET) has proven effective for treatment of phobias, although it remains important to further elucidate factors that modulate and mediate the fear responses triggered in VR. The present study assessed verbal and behavioral fear responses triggered by a height simulation in a 5-sided cave automatic virtual environment (CAVE) with visual and acoustic simulation and further investigated how fear responses are modulated by immersion, i.e., an additional wind simulation, and presence, i.e., the feeling to be present in the VE. Results revealed a high validity for the CAVE and VE in provoking height related self-reported fear and avoidance behavior in accordance with a trait measure of acrophobic fear. Increasing immersion significantly increased fear responses in high height anxious (HHA) participants, but did not affect presence. Nevertheless, presence was found to be an important predictor of fear responses. We conclude that a CAVE system can be used to elicit valid fear responses, which might be further enhanced by immersion manipulations independent from presence. These results may help to improve VRET efficacy and its transfer to real situations.}, language = {en} } @article{WinklerLiPaulietal.2023, author = {Winkler, Markus H. and Li, Yonghui and Pauli, Paul and M{\"u}hlberger, Andreas}, title = {Modulation of smoking cue reactivity by social context—Implications for exposure therapy in virtual reality}, series = {Frontiers in Virtual Reality}, volume = {4}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2023.926679}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-306199}, year = {2023}, abstract = {Rationale: Social factors are considered important for the initiation and maintenance of drug abuse. Virtual reality (VR) research on cue reactivity and exposure frequently incorporates social stimuli as part of complex drug-intake scenarios. Attempts are rarely made to dissect the impact of the different components and their interactive effects. The present study critically extends this line of research by investigating the modulatory effects of social context on the reactivity evoked by proximal smoking cues. Methods: Thirty-two smokers and 33 never-smokers were presented in VR with proximal cues and neutral stimuli, embedded in a social context or a neutral context. A virtual hand model was used to translate real hand movements into VR. Each trial started with the presentation of the different stimulus-context combinations. Discrete stimuli were presented on the table in front of the participants, and contextual stimuli were presented at the end of the table. Afterward, participants were instructed to grasp the target stimulus (a cigarette vs. a pencil) in front of them. After successful contact, the stimulus appeared in the virtual hand. Modulation of cue reactivity by social context was assessed by self-report, physiological measures, and overt approach behavior. Results: The results revealed modulatory effects of social context on the responses to proximal smoking cues in smokers. In contrast to never-smokers, smoking cues evoked craving in smokers, which was attenuated in a social context. Furthermore, social context increased the latency to approach and contact the cigarette in the group of smokers but did not affect behavioral approach responses in never-smokers. Other data provided indications for interactive, but also main effects of cues and contexts. Interestingly, cue-evoked craving was increased after contact with the virtual cigarette. Conclusion: The present study critically extends previous research by providing evidence for the modulation of cue reactivity by social context. The results are particularly important given the well-established role of drug-associated environmental contexts in the stimulus control of addictive behaviors. Our results emphasize the need to address social context effects on cue reactivity in basic research and treatment and further suggest that changes in the perceived availability of smoking might enhance or inhibit cue-evoked reactivity.}, language = {en} }