@article{GlotzbachMuehlbergerGschwendtneretal.2011, author = {Glotzbach, Evelyn and M{\"u}hlberger, Andreas and Gschwendtner, Kathrin and Fallgatter, Andreas J and Pauli, Paul and Herrmann, Martin J}, title = {Prefrontal Brain Activation During Emotional Processing: A Functional Near Infrared Spectroscopy Study (fNIRS)}, series = {The Open Neuroimaging Journal}, volume = {5}, journal = {The Open Neuroimaging Journal}, doi = {10.2174/1874440001105010033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141714}, pages = {33-39}, year = {2011}, abstract = {The limbic system and especially the amygdala have been identified as key structures in emotion induction and regulation. Recently research has additionally focused on the influence of prefrontal areas on emotion processing in the limbic system and the amygdala. Results from fMRI studies indicate that the prefrontal cortex (PFC) is involved not only in emotion induction but also in emotion regulation. However, studies using fNIRS only report prefrontal brain activation during emotion induction. So far it lacks the attempt to compare emotion induction and emotion regulation with regard to prefrontal activation measured with fNIRS, to exclude the possibility that the reported prefrontal brain activation in fNIRS studies are mainly caused by automatic emotion regulation processes. Therefore this work tried to distinguish emotion induction from regulation via fNIRS of the prefrontal cortex. 20 healthy women viewed neutral pictures as a baseline condition, fearful pictures as induction condition and reappraised fearful pictures as regulation condition in randomized order. As predicted, the view-fearful condition led to higher arousal ratings than the view-neutral condition with the reappraise-fearful condition in between. For the fNIRS results the induction condition showed an activation of the bilateral PFC compared to the baseline condition (viewing neutral). The regulation condition showed an activation only of the left PFC compared to the baseline condition, although the direct comparison between induction and regulation condition revealed no significant difference in brain activation. Therefore our study underscores the results of previous fNIRS studies showing prefrontal brain activation during emotion induction and rejects the hypothesis that this prefrontal brain activation might only be a result of automatic emotion regulation processes.}, language = {en} } @article{GerdesWieserMuehlbergeretal.2010, author = {Gerdes, Antje B. M. and Wieser, Matthias J. and M{\"u}hlberger, Andreas and Weyers, Peter and Alpers, Georg W. and Plichta, Michael M. and Breuer, Felix and Pauli, Paul}, title = {Brain activations to emotional pictures are differentially associated with valence and arousal ratings}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68153}, year = {2010}, abstract = {Several studies have investigated the neural responses triggered by emotional pictures, but the specificity of the involved structures such as the amygdala or the ventral striatum is still under debate. Furthermore, only few studies examined the association of stimuli's valence and arousal and the underlying brain responses. Therefore, we investigated brain responses with functional magnetic resonance imaging of 17 healthy participants to pleasant and unpleasant affective pictures and afterwards assessed ratings of valence and arousal. As expected, unpleasant pictures strongly activated the right and left amygdala, the right hippocampus, and the medial occipital lobe, whereas pleasant pictures elicited significant activations in left occipital regions, and in parts of the medial temporal lobe. The direct comparison of unpleasant and pleasant pictures, which were comparable in arousal clearly indicated stronger amygdala activation in response to the unpleasant pictures. Most important, correlational analyses revealed on the one hand that the arousal of unpleasant pictures was significantly associated with activations in the right amygdala and the left caudate body. On the other hand, valence of pleasant pictures was significantly correlated with activations in the right caudate head, extending to the nucleus accumbens (NAcc) and the left dorsolateral prefrontal cortex. These findings support the notion that the amygdala is primarily involved in processing of unpleasant stimuli, particularly to more arousing unpleasant stimuli. Reward-related structures like the caudate and NAcc primarily respond to pleasant stimuli, the stronger the more positive the valence of these stimuli is.}, subject = {Psychologie}, language = {en} } @article{SchwarzWieserGerdesetal.2013, author = {Schwarz, Katharina A. and Wieser, Matthias J. and Gerdes, Antje B. M. and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {Why are you looking like that? How the context influences evaluation and processing of human faces}, series = {Social Cognitive and Affective Neuroscience}, volume = {8}, journal = {Social Cognitive and Affective Neuroscience}, number = {4}, doi = {10.1093/scan/nss013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132126}, pages = {438-445}, year = {2013}, abstract = {Perception and evaluation of facial expressions are known to be heavily modulated by emotional features of contextual information. Such contextual effects, however, might also be driven by non-emotional aspects of contextual information, an interaction of emotional and non-emotional factors, and by the observers' inherent traits. Therefore, we sought to assess whether contextual information about self-reference in addition to information about valence influences the evaluation and neural processing of neutral faces. Furthermore, we investigated whether social anxiety moderates these effects. In the present functional magnetic resonance imaging (fMRI) study, participants viewed neutral facial expressions preceded by a contextual sentence conveying either positive or negative evaluations about the participant or about somebody else. Contextual influences were reflected in rating and fMRI measures, with strong effects of self-reference on brain activity in the medial prefrontal cortex and right fusiform gyrus. Additionally, social anxiety strongly affected the response to faces conveying negative, self-related evaluations as revealed by the participants' rating patterns and brain activity in cortical midline structures and regions of interest in the left and right middle frontal gyrus. These results suggest that face perception and processing are highly individual processes influenced by emotional and non-emotional aspects of contextual information and further modulated by individual personality traits.}, language = {en} } @article{KlaukeWinterGajewskaetal.2012, author = {Klauke, Benedikt and Winter, Bernward and Gajewska, Agnes and Zwanzger, Peter and Reif, Andreas and Herrmann, Martin J. and Dlugos, Andrea and Warrings, Bodo and Jacob, Christian and M{\"u}hlberger, Andreas and Arolt, Volker and Pauli, Paul and Deckert, J{\"u}rgen and Domschke, Katharina}, title = {Affect-Modulated Startle: Interactive Influence of Catechol-O-Methyltransferase Val158Met Genotype and Childhood Trauma}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {6}, doi = {10.1371/journal.pone.0039709}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132184}, pages = {e39709}, year = {2012}, abstract = {The etiology of emotion-related disorders such as anxiety or affective disorders is considered to be complex with an interaction of biological and environmental factors. Particular evidence has accumulated for alterations in the dopaminergic and noradrenergic system - partly conferred by catechol-O-methyltransferase (COMT) gene variation - for the adenosinergic system as well as for early life trauma to constitute risk factors for those conditions. Applying a multi-level approach, in a sample of 95 healthy adults, we investigated effects of the functional COMT Val158Met polymorphism, caffeine as an adenosine A2A receptor antagonist (300 mg in a placebo-controlled intervention design) and childhood maltreatment (CTQ) as well as their interaction on the affect-modulated startle response as a neurobiologically founded defensive reflex potentially related to fear- and distress-related disorders. COMT val/val genotype significantly increased startle magnitude in response to unpleasant stimuli, while met/met homozygotes showed a blunted startle response to aversive pictures. Furthermore, significant gene-environment interaction of COMT Val158Met genotype with CTQ was discerned with more maltreatment being associated with higher startle potentiation in val/val subjects but not in met carriers. No main effect of or interaction effects with caffeine were observed. Results indicate a main as well as a GxE effect of the COMT Val158Met variant and childhood maltreatment on the affect-modulated startle reflex, supporting a complex pathogenetic model of the affect-modulated startle reflex as a basic neurobiological defensive reflex potentially related to anxiety and affective disorders.}, language = {en} } @article{AndreattaMuehlbergerGlotzbachSchoonetal.2013, author = {Andreatta, Marta and M{\"u}hlberger, Andreas and Glotzbach-Schoon, Evelyn and Pauli, Paul}, title = {Pain predictability reverses valence ratings of a relief-associated stimulus}, series = {Front in Systems Neuroscience}, volume = {7}, journal = {Front in Systems Neuroscience}, number = {53}, doi = {10.3389/fnsys.2013.00053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129275}, year = {2013}, abstract = {Relief from pain is positively valenced and entails reward-like properties. Notably, stimuli that became associated with pain relief elicit reward-like implicit responses too, but are explicitly evaluated by humans as aversive. Since the unpredictability of pain makes pain more aversive, this study examined the hypotheses that the predictability of pain also modulates the valence of relief-associated stimuli. In two studies, we presented one conditioned stimulus \((_{FORWARD}CS+)\) before a painful unconditioned stimulus (US), another stimulus \((_{BACKWARD}CS+)\) after the painful US, and a third stimulus (CS-) was never associated with the US. In Study 1, \(_{FORWARD}CS+\) predicted half of the USs while the other half was delivered unwarned and followed by \(_{BACKWARD}CS+\). In Study 2, all USs were predicted by \(_{FORWARD}CS+\) and followed by \(_{BACKWARD}CS+\). In Study 1 both \(_{FORWARD}CS+\) and \(_{BACKWARD}CS+\) were rated as negatively valenced and high arousing after conditioning, while \(_{BACKWARD}CS+\) in Study 2 acquired positive valence and low arousal. Startle amplitude was significantly attenuated to \(_{BACKWARD}CS+\) compared to \(_{FORWARD}CS+\) in Study 2, but did not differ among CSs in Study 1. In summary, predictability of aversive events reverses the explicit valence of a relief-associated stimulus.}, language = {en} } @article{EwaldGlotzbachSchoonGerdesetal.2014, author = {Ewald, Heike and Glotzbach-Schoon, Evelyn and Gerdes, Antje B. M. and Andreatta, Marta and M{\"u}ller, Mathias and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {Delay and trace fear conditioning in a complex virtual learning environment - neural substrates of extinction}, series = {Frontiers in Human Neuroscience}, volume = {8}, journal = {Frontiers in Human Neuroscience}, number = {323}, issn = {1662-5161}, doi = {10.3389/fnhum.2014.00323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116230}, year = {2014}, abstract = {Extinction is an important mechanism to inhibit initially acquired fear responses. There is growing evidence that the ventromedial prefrontal cortex (vmPFC) inhibits the amygdala and therefore plays an important role in the extinction of delay fear conditioning. To our knowledge, there is no evidence on the role of the prefrontal cortex in the extinction of trace conditioning up to now. Thus, we compared brain structures involved in the extinction of human delay and trace fear conditioning in a between-subjects-design in an fMRI study. Participants were passively guided through a virtual environment during learning and extinction of conditioned fear. Two different lights served as conditioned stimuli (CS); as unconditioned stimulus (US) a mildly painful electric stimulus was delivered. In the delay conditioning group (DCG) the US was administered with offset of one light (CS+), whereas in the trace conditioning group (TCG) the US was presented 4s after CS+ offset. Both groups showed insular and striatal activation during early extinction, but differed in their prefrontal activation. The vmPFC was mainly activated in the DCG, whereas the TCG showed activation of the dorsolateral prefrontal cortex (dlPFC) during extinction. These results point to different extinction processes in delay and trace conditioning. VmPFC activation during extinction of delay conditioning might reflect the inhibition of the fear response. In contrast, dlPFC activation during extinction of trace conditioning may reflect modulation of working memory processes which are involved in bridging the trace interval and hold information in short term memory.}, language = {en} } @article{HerrmannGlotzbachMuehlbergeretal.2011, author = {Herrmann, Martin J. and Glotzbach, Evelyn and M{\"u}hlberger, Andreas and Gschwendtner, Kathrin and Fallgatter, Andreas J. and Pauli, Paul}, title = {Prefrontal Brain Activation During Emotional Processing: A Functional Near Infrared Spectroscopy Study (fNIRS)}, series = {The Open Neuroimaging Journal}, journal = {The Open Neuroimaging Journal}, doi = {10.2174/1874440001105010033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97437}, year = {2011}, abstract = {The limbic system and especially the amygdala have been identified as key structures in emotion induction and regulation. Recently research has additionally focused on the influence of prefrontal areas on emotion processing in the limbic system and the amygdala. Results from fMRI studies indicate that the prefrontal cortex (PFC) is involved not only in emotion induction but also in emotion regulation. However, studies using fNIRS only report prefrontal brain activation during emotion induction. So far it lacks the attempt to compare emotion induction and emotion regulation with regard to prefrontal activation measured with fNIRS, to exclude the possibility that the reported prefrontal brain activation in fNIRS studies are mainly caused by automatic emotion regulation processes. Therefore this work tried to distinguish emotion induction from regulation via fNIRS of the prefrontal cortex. 20 healthy women viewed neutral pictures as a baseline condition, fearful pictures as induction condition and reappraised fearful pictures as regulation condition in randomized order. As predicted, the view-fearful condition led to higher arousal ratings than the view-neutral condition with the reappraise-fearful condition in between. For the fNIRS results the induction condition showed an activation of the bilateral PFC compared to the baseline condition (viewing neutral). The regulation condition showed an activation only of the left PFC compared to the baseline condition, although the direct comparison between induction and regulation condition revealed no significant difference in brain activation. Therefore our study underscores the results of previous fNIRS studies showing prefrontal brain activation during emotion induction and rejects the hypothesis that this prefrontal brain activation might only be a result of automatic emotion regulation processes.}, language = {en} } @article{PauliGlotzbachSchoonAndreattaetal.2013, author = {Pauli, Paul and Glotzbach-Schoon, Evelyn and Andreatta, Marta and Reif, Andreas and Ewald, Heike and Tr{\"o}ger, Christian and Baumann, Christian and Deckert, J{\"u}rgen and M{\"u}hlberger, Andreas}, title = {Contextual fear conditioning in virtual reality is affected by 5HTTLPR and NPSR1 polymorphisms: effects on fear-potentiated startle}, series = {Frontiers in Behavioral Neuroscience}, journal = {Frontiers in Behavioral Neuroscience}, doi = {10.3389/fnbeh.2013.00031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96516}, year = {2013}, abstract = {The serotonin (5-HT) and neuropeptide S (NPS) systems are discussed as important genetic modulators of fear and sustained anxiety contributing to the etiology of anxiety disorders. Sustained anxiety is a crucial characteristic of most anxiety disorders which likely develops through contextual fear conditioning. This study investigated if and how genetic alterations of the 5-HT and the NPS systems as well as their interaction modulate contextual fear conditioning; specifically, function polymorphic variants in the genes coding for the 5-HT transporter (5HTT) and the NPS receptor (NPSR1) were studied. A large group of healthy volunteers was therefore stratified for 5HTTLPR (S+ vs. LL carriers) and NPSR1 rs324981 (T+ vs. AA carriers) polymorphisms resulting in four genotype groups (S+/T+, S+/AA, LL/T+, LL/AA) of 20 participants each. All participants underwent contextual fear conditioning and extinction using a virtual reality (VR) paradigm. During acquisition, one virtual office room (anxiety context, CXT+) was paired with an unpredictable electric stimulus (unconditioned stimulus, US), whereas another virtual office room was not paired with any US (safety context, CXT-). During extinction no US was administered. Anxiety responses were quantified by fear-potentiated startle and ratings. Most importantly, we found a gene × gene interaction on fear-potentiated startle. Only carriers of both risk alleles (S+/T+) exhibited higher startle responses in CXT+ compared to CXT-. In contrast, anxiety ratings were only influenced by the NPSR1 polymorphism with AA carriers showing higher anxiety ratings in CXT+ as compared to CXT-. Our results speak in favor of a two level account of fear conditioning with diverging effects on implicit vs. explicit fear responses. Enhanced contextual fear conditioning as reflected in potentiated startle responses may be an endophenotype for anxiety disorders.}, language = {en} } @article{LikowskiMuehlbergerGerdesetal.2012, author = {Likowski, Katja U. and M{\"u}hlberger, Andreas and Gerdes, Antje B. M. and Wieser, Mattias J. and Pauli, Paul and Weyers, Peter}, title = {Facial mimicry and the mirror neuron system: simultaneous acquisition of facial electromyography and functional magnetic resonance imaging}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75813}, year = {2012}, abstract = {Numerous studies have shown that humans automatically react with congruent facial reactions, i.e., facial mimicry, when seeing a vis-{\´a}-vis' facial expressions. The current experiment is the first investigating the neuronal structures responsible for differences in the occurrence of such facial mimicry reactions by simultaneously measuring BOLD and facial EMG in an MRI scanner. Therefore, 20 female students viewed emotional facial expressions (happy, sad, and angry) of male and female avatar characters. During picture presentation, the BOLD signal as well as M. zygomaticus major and M. corrugator supercilii activity were recorded simultaneously. Results show prototypical patterns of facial mimicry after correction for MR-related artifacts: enhanced M. zygomaticus major activity in response to happy and enhanced M. corrugator supercilii activity in response to sad and angry expressions. Regression analyses show that these congruent facial reactions correlate significantly with activations in the IFG, SMA, and cerebellum. Stronger zygomaticus reactions to happy faces were further associated to increased activities in the caudate, MTG, and PCC. Corrugator reactions to angry expressions were further correlated with the hippocampus, insula, and STS. Results are discussed in relation to core and extended models of the mirror neuron system (MNS).}, subject = {Psychologie}, language = {en} } @article{GromerMadeiraGastetal.2018, author = {Gromer, Daniel and Madeira, Oct{\´a}via and Gast, Philipp and Nehfischer, Markus and Jost, Michael and M{\"u}ller, Mathias and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {Height Simulation in a Virtual Reality CAVE System: Validity of Fear Responses and Effects of an Immersion Manipulation}, series = {Frontiers in Human Neuroscience}, volume = {12}, journal = {Frontiers in Human Neuroscience}, number = {372}, issn = {1662-5161}, doi = {10.3389/fnhum.2018.00372}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196113}, year = {2018}, abstract = {Acrophobia is characterized by intense fear in height situations. Virtual reality (VR) can be used to trigger such phobic fear, and VR exposure therapy (VRET) has proven effective for treatment of phobias, although it remains important to further elucidate factors that modulate and mediate the fear responses triggered in VR. The present study assessed verbal and behavioral fear responses triggered by a height simulation in a 5-sided cave automatic virtual environment (CAVE) with visual and acoustic simulation and further investigated how fear responses are modulated by immersion, i.e., an additional wind simulation, and presence, i.e., the feeling to be present in the VE. Results revealed a high validity for the CAVE and VE in provoking height related self-reported fear and avoidance behavior in accordance with a trait measure of acrophobic fear. Increasing immersion significantly increased fear responses in high height anxious (HHA) participants, but did not affect presence. Nevertheless, presence was found to be an important predictor of fear responses. We conclude that a CAVE system can be used to elicit valid fear responses, which might be further enhanced by immersion manipulations independent from presence. These results may help to improve VRET efficacy and its transfer to real situations.}, language = {en} } @article{WalzMuehlbergerPauli2016, author = {Walz, Nora and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {A human open field test reveals thigmotaxis related to agoraphobic fear}, series = {Biological Psychiatry}, volume = {80}, journal = {Biological Psychiatry}, number = {5}, doi = {10.1016/j.biopsych.2015.12.016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187607}, pages = {390-397}, year = {2016}, abstract = {BACKGROUND: Thigmotaxis refers to a specific behavior of animals (i.e., to stay close to walls when exploring an open space). Such behavior can be assessed with the open field test (OFT), which is a well-established indicator of animal fear. The detection of similar open field behavior in humans may verify the translational validity of this paradigm. Enhanced thigmotaxis related to anxiety may suggest the relevance of such behavior for anxiety disorders, especially agoraphobia. METHODS: A global positioning system was used to analyze the behavior of 16 patients with agoraphobia and 18 healthy individuals with a risk for agoraphobia (i.e., high anxiety sensitivity) during a human OFT and compare it with appropriate control groups (n = 16 and n = 19). We also tracked 17 patients with agoraphobia and 17 control participants during a city walk that involved walking through an open market square. RESULTS: Our human OFT triggered thigmotaxis in participants; patients with agoraphobia and participants with high anxiety sensitivity exhibited enhanced thigmotaxis. This behavior was evident in increased movement lengths along the wall of the natural open field and fewer entries into the center of the field despite normal movement speed and length. Furthermore, participants avoided passing through the market square during the city walk, indicating again that thigmotaxis is related to agoraphobia. CONCLUSIONS: This study is the first to our knowledge to verify the translational validity of the OFT and to reveal that thigmotaxis, an evolutionarily adaptive behavior shown by most species, is related to agoraphobia, a pathologic fear of open spaces, and anxiety sensitivity, a risk factor for agoraphobia.}, language = {en} } @article{ShibanDiemerMuelleretal.2017, author = {Shiban, Youssef and Diemer, Julia and M{\"u}ller, Jana and Br{\"u}tting-Schick, Johanna and Pauli, Paul and M{\"u}hlberger, Andreas}, title = {Diaphragmatic breathing during virtual reality exposure therapy for aviophobia: functional coping strategy or avoidance behavior? A pilot study}, series = {BMC Psychiatry}, volume = {17}, journal = {BMC Psychiatry}, doi = {10.1186/s12888-016-1181-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181007}, pages = {10}, year = {2017}, abstract = {Background: Although there is solid evidence for the efficacy of in vivo and virtual reality (VR) exposure therapy for a specific phobia, there is a significant debate over whether techniques promoting distraction or relaxation have impairing or enhancing effects on treatment outcome. In the present pilot study, we investigated the effect of diaphragmatic breathing (DB) as a relaxation technique during VR exposure treatment. Method: Twenty-nine patients with aviophobia were randomly assigned to VR exposure treatment either with or without diaphragmatic breathing (six cycles per minute). Subjective fear ratings, heart rate and skin conductance were assessed as indicators of fear during both the exposure and the test session one week later. Results: The group that experienced VR exposure combined with diaphragmatic breathing showed a higher tendency to effectively overcome the fear of flying. Psychophysiological measures of fear decreased and self-efficacy increased in both groups with no significant difference between the groups. Conclusions: Our findings indicate that diaphragmatic breathing during VR exposure does not interfere with the treatment outcome and may even enhance treatment effects of VR exposure therapy for aviophobic patients.}, language = {en} } @article{WinklerLiPaulietal.2023, author = {Winkler, Markus H. and Li, Yonghui and Pauli, Paul and M{\"u}hlberger, Andreas}, title = {Modulation of smoking cue reactivity by social context—Implications for exposure therapy in virtual reality}, series = {Frontiers in Virtual Reality}, volume = {4}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2023.926679}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-306199}, year = {2023}, abstract = {Rationale: Social factors are considered important for the initiation and maintenance of drug abuse. Virtual reality (VR) research on cue reactivity and exposure frequently incorporates social stimuli as part of complex drug-intake scenarios. Attempts are rarely made to dissect the impact of the different components and their interactive effects. The present study critically extends this line of research by investigating the modulatory effects of social context on the reactivity evoked by proximal smoking cues. Methods: Thirty-two smokers and 33 never-smokers were presented in VR with proximal cues and neutral stimuli, embedded in a social context or a neutral context. A virtual hand model was used to translate real hand movements into VR. Each trial started with the presentation of the different stimulus-context combinations. Discrete stimuli were presented on the table in front of the participants, and contextual stimuli were presented at the end of the table. Afterward, participants were instructed to grasp the target stimulus (a cigarette vs. a pencil) in front of them. After successful contact, the stimulus appeared in the virtual hand. Modulation of cue reactivity by social context was assessed by self-report, physiological measures, and overt approach behavior. Results: The results revealed modulatory effects of social context on the responses to proximal smoking cues in smokers. In contrast to never-smokers, smoking cues evoked craving in smokers, which was attenuated in a social context. Furthermore, social context increased the latency to approach and contact the cigarette in the group of smokers but did not affect behavioral approach responses in never-smokers. Other data provided indications for interactive, but also main effects of cues and contexts. Interestingly, cue-evoked craving was increased after contact with the virtual cigarette. Conclusion: The present study critically extends previous research by providing evidence for the modulation of cue reactivity by social context. The results are particularly important given the well-established role of drug-associated environmental contexts in the stimulus control of addictive behaviors. Our results emphasize the need to address social context effects on cue reactivity in basic research and treatment and further suggest that changes in the perceived availability of smoking might enhance or inhibit cue-evoked reactivity.}, language = {en} }