@article{BrenzingerMaihoffPetersetal.2022, author = {Brenzinger, Kristof and Maihoff, Fabienne and Peters, Marcell K. and Schimmer, Leonie and Bischler, Thorsten and Classen, Alice}, title = {Temperature and livestock grazing trigger transcriptome responses in bumblebees along an elevational gradient}, series = {iScience}, volume = {25}, journal = {iScience}, number = {10}, doi = {10.1016/j.isci.2022.105175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301276}, year = {2022}, abstract = {Climate and land-use changes cause increasing stress to pollinators but the molecular pathways underlying stress responses are poorly understood. Here, we analyzed the transcriptomic response of Bombus lucorum workers to temperature and livestock grazing. Bumblebees sampled along an elevational gradient, and from differently managed grassland sites (livestock grazing vs unmanaged) in the German Alps did not differ in the expression of genes known for thermal stress responses. Instead, metabolic energy production pathways were upregulated in bumblebees sampled in mid- or high elevations or during cool temperatures. Extensive grazing pressure led to an upregulation of genetic pathways involved in immunoregulation and DNA-repair. We conclude that widespread bumblebees are tolerant toward temperature fluctuations in temperate mountain environments. Moderate temperature increases may even release bumblebees from metabolic stress. However, transcriptome responses to even moderate management regimes highlight the completely underestimated complexity of human influence on natural pollinators.}, language = {en} } @article{ClassenEardleyHempetal.2020, author = {Classen, Alice and Eardley, Connal D. and Hemp, Andreas and Peters, Marcell K. and Peters, Ralph S. and Ssymank, Axel and Steffan-Dewenter, Ingolf}, title = {Specialization of plant-pollinator interactions increases with temperature at Mt. Kilimanjaro}, series = {Ecology and Evolution}, volume = {10}, journal = {Ecology and Evolution}, number = {4}, doi = {10.1002/ece3.6056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235959}, pages = {2182-2195}, year = {2020}, abstract = {Aim: Species differ in their degree of specialization when interacting with other species, with significant consequences for the function and robustness of ecosystems. In order to better estimate such consequences, we need to improve our understanding of the spatial patterns and drivers of specialization in interaction networks. Methods: Here, we used the extensive environmental gradient of Mt. Kilimanjaro (Tanzania, East Africa) to study patterns and drivers of specialization, and robustness of plant-pollinator interactions against simulated species extinction with standardized sampling methods. We studied specialization, network robustness and other network indices of 67 quantitative plant-pollinator networks consisting of 268 observational hours and 4,380 plant-pollinator interactions along a 3.4 km elevational gradient. Using path analysis, we tested whether resource availability, pollinator richness, visitation rates, temperature, and/or area explain average specialization in pollinator communities. We further linked pollinator specialization to different pollinator taxa, and species traits, that is, proboscis length, body size, and species elevational ranges. Results: We found that specialization decreased with increasing elevation at different levels of biological organization. Among all variables, mean annual temperature was the best predictor of average specialization in pollinator communities. Specialization differed between pollinator taxa, but was not related to pollinator traits. Network robustness against simulated species extinctions of both plants and pollinators was lowest in the most specialized interaction networks, that is, in the lowlands. Conclusions: Our study uncovers patterns in plant-pollinator specialization along elevational gradients. Mean annual temperature was closely linked to pollinator specialization. Energetic constraints, caused by short activity timeframes in cold highlands, may force ectothermic species to broaden their dietary spectrum. Alternatively or in addition, accelerated evolutionary rates might facilitate the establishment of specialization under warm climates. Despite the mechanisms behind the patterns have yet to be fully resolved, our data suggest that temperature shifts in the course of climate change may destabilize pollination networks by affecting network architecture.}, language = {en} } @article{DitzelKoenigMusembietal.2022, author = {Ditzel, Pia and K{\"o}nig, Sebastian and Musembi, Peter and Peters, Marcell K.}, title = {Correlation between coral reef condition and the diversity and abundance of fishes and sea urchins on an East African coral reef}, series = {Oceans}, volume = {3}, journal = {Oceans}, number = {1}, issn = {2673-1924}, doi = {10.3390/oceans3010001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284503}, pages = {1 -- 14}, year = {2022}, abstract = {Coral reefs are one of the most diverse marine ecosystems, providing numerous ecosystem services. This present study investigated the relationship between coral reef condition and the diversity and abundance of fishes, on a heavily fished East African coral reef at Gazi Bay, Kenya. Underwater visual censuses were conducted on thirty 50 × 5 m belt transects to assess the abundance and diversity of fishes. In parallel, a 25-m length of each of the same transects was recorded with photo-quadrats to assess coral community structure and benthic characteristics. For statistical analyses, multi-model inference based on the Akaike Information Criterion was used to evaluate the support for potential predictor variables of coral reef and fish diversity. We found that coral genus richness was negatively correlated with the abundance of macroalgae, whereas coral cover was positively correlated with both the abundance of herbivorous invertebrates (sea urchins) and with fish family richness. Similarly, fish family richness appeared mainly correlated with coral cover and invertebrate abundance, although no correlates of fish abundance could be identified. Coral and fish diversity were very low, but it appears that, contrary to some locations on the same coast, sea urchin abundance was not high enough to be having a negative influence on coral and fish assemblages. Due to increasing threats to coral reefs, it is important to understand the relationship among the components of the coral reef ecosystem on overfished reefs such as that at Gazi Bay.}, language = {en} } @article{GanuzaRedlichUhleretal.2022, author = {Ganuza, Cristina and Redlich, Sarah and Uhler, Johannes and Tobisch, Cynthia and Rojas-Botero, Sandra and Peters, Marcell K. and Zhang, Jie and Benjamin, Caryl S. and Englmeier, Jana and Ewald, J{\"o}rg and Fricke, Ute and Haensel, Maria and Kollmann, Johannes and Riebl, Rebekka and Uphus, Lars and M{\"u}ller, J{\"o}rg and Steffan-Dewenter, Ingolf}, title = {Interactive effects of climate and land use on pollinator diversity differ among taxa and scales}, series = {Science Advances}, volume = {8}, journal = {Science Advances}, number = {18}, doi = {10.1126/sciadv.abm9359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301303}, year = {2022}, abstract = {Changes in climate and land use are major threats to pollinating insects, an essential functional group. Here, we unravel the largely unknown interactive effects of both threats on seven pollinator taxa using a multiscale space-for-time approach across large climate and land-use gradients in a temperate region. Pollinator community composition, regional gamma diversity, and community dissimilarity (beta diversity) of pollinator taxa were shaped by climate-land-use interactions, while local alpha diversity was solely explained by their additive effects. Pollinator diversity increased with reduced land-use intensity (forest < grassland < arable land < urban) and high flowering-plant diversity at different spatial scales, and higher temperatures homogenized pollinator communities across regions. Our study reveals declines in pollinator diversity with land-use intensity at multiple spatial scales and regional community homogenization in warmer and drier climates. Management options at several scales are highlighted to mitigate impacts of climate change on pollinators and their ecosystem services.}, language = {en} } @article{GebertSteffanDewenterMorettoetal.2019, author = {Gebert, Friederike and Steffan-Dewenter, Ingolf and Moretto, Philippe and Peters, Marcell K.}, title = {Climate rather than dung resources predict dung beetle abundance and diversity along elevational and land use gradients on Mt. Kilimanjaro}, series = {Journal of Biogeography}, volume = {47}, journal = {Journal of Biogeography}, number = {2}, doi = {10.1111/jbi.13710}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204701}, pages = {371 -- 381}, year = {2019}, abstract = {Aim: While elevational gradients in species richness constitute some of the best depicted patterns in ecology, there is a large uncertainty concerning the role of food resource availability for the establishment of diversity gradients in insects. Here, we analysed the importance of climate, area, land use and food resources for determining diversity gradients of dung beetles along extensive elevation and land use gradients on Mt. Kilimanjaro, Tanzania. Location: Mt. Kilimanjaro, Tanzania. Taxon: Scarabaeidae (Coleoptera). Methods: Dung beetles were recorded with baited pitfall traps at 66 study plots along a 3.6 km elevational gradient. In order to quantify food resources for the dung beetle community in form of mammal defecation rates, we assessed mammalian diversity and biomass with camera traps. Using a multi-model inference framework and path analysis, we tested the direct and indirect links between climate, area, land use and mammal defecation rates on the species richness and abundance of dung beetles. Results: We found that the species richness of dung beetles declined exponentially with increasing elevation. Human land use diminished the species richness of functional groups exhibiting complex behaviour but did not have a significant influence on total species richness. Path analysis suggested that climate, in particular temperature and to a lesser degree precipitation, were the most important predictors of dung beetle species richness while mammal defecation rate was not supported as a predictor variable. Main conclusions: Along broad climatic gradients, dung beetle diversity is mainly limited by climatic factors rather than by food resources. Our study points to a predominant role of temperature-driven processes for the maintenance and origination of species diversity of ectothermic organisms, which will consequently be subject to ongoing climatic changes.}, language = {en} } @article{GebertSteffan‐DewenterKronbachetal.2022, author = {Gebert, Friederike and Steffan-Dewenter, Ingolf and Kronbach, Patrick and Peters, Marcell K.}, title = {The role of diversity, body size and climate in dung removal: A correlative and experimental approach}, series = {Journal of Animal Ecology}, volume = {91}, journal = {Journal of Animal Ecology}, number = {11}, doi = {10.1111/1365-2656.13798}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293907}, pages = {2181 -- 2191}, year = {2022}, abstract = {The mechanisms by which climatic changes influence ecosystem functions, that is, by a direct climatic control of ecosystem processes or by modifying richness and trait compositions of species communities, remain unresolved. This study is a contribution to this discourse by elucidating the linkages between climate, land use, biodiversity, body size and ecosystem functions. We disentangled direct climatic from biodiversity-mediated effects by using dung removal by dung beetles as a model system and by combining correlative field data and exclosure experiments along an extensive elevational gradient on Mt. Kilimanjaro, Tanzania. Dung removal declined with increasing elevation, being associated with a strong reduction in the richness and body size traits of dung beetle communities. Climate influenced dung removal rates by modifying biodiversity rather than by direct effects. The biodiversity-ecosystem effect was driven by a change in the mean body size of dung beetles. Dung removal rates were strongly reduced when large dung beetles were experimentally excluded. This study underscores that climate influences ecosystem functions mainly by modifying biodiversity and underpins the important role of body size for dung removal.}, language = {en} } @article{KronauerPetersSchoningetal.2011, author = {Kronauer, Daniel J. C. and Peters, Marcell K. and Schoning, Caspar and Boomsma, Jacobus J.}, title = {Hybridization in East African swarm-raiding army ants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68798}, year = {2011}, abstract = {Background: Hybridization can have complex effects on evolutionary dynamics in ants because of the combination of haplodiploid sex-determination and eusociality. While hybrid non-reproductive workers have been found in a range of species, examples of gene-flow via hybrid queens and males are rare. We studied hybridization in East African army ants (Dorylus subgenus Anomma) using morphology, mitochondrial DNA sequences, and nuclear microsatellites. Results: While the mitochondrial phylogeny had a strong geographic signal, different species were not recovered as monophyletic. At our main study site at Kakamega Forest, a mitochondrial haplotype was shared between a "Dorylus molestus-like" and a "Dorylus wilverthi-like" form. This pattern is best explained by introgression following hybridization between D. molestus and D. wilverthi. Microsatellite data from workers showed that the two morphological forms correspond to two distinct genetic clusters, with a significant proportion of individuals being classified as hybrids. Conclusions: We conclude that hybridization and gene-flow between the two army ant species D. molestus and D. wilverthi has occurred, and that mating between the two forms continues to regularly produce hybrid workers. Hybridization is particularly surprising in army ants because workers have control over which males are allowed to mate with a young virgin queen inside the colony.}, subject = {Zoologie}, language = {en} } @article{LaswayKinaboMremietal.2021, author = {Lasway, Julius V. and Kinabo, Neema R. and Mremi, Rudolf F. and Martin, Emanuel H. and Nyakunga, Oliver C. and Sanya, John J. and Rwegasira, Gration M. and Lesio, Nicephor and Gideon, Hulda and Pauly, Alain and Eardley, Connal and Peters, Marcell K. and Peterson, Andrew T. and Steffan-Dewenter, Ingolf and Njovu, Henry K.}, title = {A synopsis of the Bee occurrence data of northern Tanzania}, series = {Biodiversity Data Journal}, volume = {9}, journal = {Biodiversity Data Journal}, doi = {10.3897/BDJ.9.e68190}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265018}, year = {2021}, abstract = {Background Bees (Hymenoptera: Apoidea: Anthophila) are the most important group of pollinators with about 20,507 known species worldwide. Despite the critical role of bees in providing pollination services, studies aiming at understanding which species are present across disturbance gradients are scarce. Limited taxononomic information for the existing and unidentified bee species in Tanzania make their conservation haphazard. Here, we present a dataset of bee species records obtained from a survey in nothern Tanzania i.e. Kilimanjaro, Arusha and Manyara regions. Our findings serve as baseline data necessary for understanding the diversity and distribution of bees in the northern parts of the country, which is a critical step in devising robust conservation and monitoring strategies for their populations. New information In this paper, we present information on 45 bee species belonging to 20 genera and four families sampled using a combination of sweep-netting and pan trap methods. Most species (27, ~ 60\%) belong to the family Halictidae followed by 16 species (35.5\%) from the family Apidae. Megachilidae and Andrenidae were the least represented, each with only one species (2.2\%). Additional species of Apidae and Megachilidae sampled during this survey are not yet published on Global Biodiversity Information Facility (GBIF), once they will be available on GBIF, they will be published in a subsequent paper. From a total of 953 occurrences, highest numbers were recorded in Kilimanjaro Region (n = 511), followed by Arusha (n = 410) and Manyara (n = 32), but this pattern reflects the sampling efforts of the research project rather than real bias in the distributions of bee species in northern Tanzania.}, language = {en} } @article{LaswayPetersNjovuetal.2022, author = {Lasway, Julius V. and Peters, Marcell K. and Njovu, Henry K. and Eardley, Connal and Pauly, Alain and Steffan-Dewenter, Ingolf}, title = {Agricultural intensification with seasonal fallow land promotes high bee diversity in Afrotropical drylands}, series = {Journal of Applied Ecology}, volume = {59}, journal = {Journal of Applied Ecology}, number = {12}, doi = {10.1111/1365-2664.14296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311877}, pages = {3014 -- 3026}, year = {2022}, abstract = {The exponential increase in the human population in tandem with increased food demand has caused agriculture to be the global-dominant form of land use. Afrotropical drylands are currently facing the loss of natural savannah habitats and agricultural intensification with largely unknown consequences for bees. Here we investigate the effects of agricultural intensification on bee assemblages in the Afrotropical drylands of northern Tanzania. We disentangled the direct effects of agricultural intensification and temperature on bee richness from indirect effects mediated by changes in floral resources. We collected data from 24 study sites representing three levels of management intensity (natural savannah, moderate intensive and highly intensive agriculture) spanning an extensive gradient of mean annual temperature (MAT) in northern Tanzania. We used ordinary linear models and path analysis to test the effects of agricultural intensity and MAT on bee species richness, bee species composition and body-size variation of bee communities. We found that bee species richness increased with agricultural intensity and with increasing temperature. The effects of agricultural intensity and temperature on bee species richness were mediated by the positive effects of agriculture and temperature on the richness of floral resources used by bees. During the off-growing season, agricultural land was characterized by an extensive period of fallow land holding a very high density of flowering plants with unique bee species composition. The increase in bee diversity in agricultural habitats paralleled an increasing variation of bee body sizes with agricultural intensification that, however, diminished in environments with higher temperatures. Synthesis and applications. Our study reveals that bee assemblages in Afrotropical drylands benefit from agricultural intensification in the way it is currently practiced. However, further land-use intensification, including year-round irrigated crop monocultures and excessive use of agrochemicals, is likely to exert a negative impact on bee diversity and pollination services, as reported in temperate regions. Moreover, several bee species were restricted to natural savannah habitats. To conserve bee communities and guarantee pollination services in the region, a mixture of savannah and agriculture, with long periods of fallow land should be maintained.}, language = {en} } @article{MayrKellerPetersetal.2021, author = {Mayr, Antonia V. and Keller, Alexander and Peters, Marcell K. and Grimmer, Gudrun and Krischke, Beate and Geyer, Mareen and Schmitt, Thomas and Steffan-Dewenter, Ingolf}, title = {Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {12}, doi = {10.1002/ece3.7605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238853}, pages = {7700 -- 7712}, year = {2021}, abstract = {Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus Lasioglossum along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania. We detected a strong species turnover of morphologically indistinguishable taxa with phylogenetically clustered cryptic species at high elevations, changes in CHC profiles, pollen resource diversity, and a turnover in the gut and body surface microbiome of bees. At high elevations, increased proportions of saturated compounds in CHC profiles indicate physiological adaptations to prevent desiccation. More specialized diets with higher proportions of low-quality Asteraceae pollen imply constraints in the availability of food resources. Interactive effects of climatic conditions on gut and surface microbiomes, CHC profiles, and pollen diet suggest complex feedbacks among abiotic conditions, ecological interactions, physiological adaptations, and phylogenetic constraints as drivers of halictid bee communities at Mt. Kilimanjaro.}, language = {en} }