@article{StiebKelberWehneretal.2011, author = {Stieb, Sara Mae and Kelber, Christina and Wehner, R{\"u}diger and R{\"o}ssler, Wolfgang}, title = {Antennal-Lobe Organization in Desert Ants of the Genus Cataglyphis}, series = {Brain, Behavior and Evolution}, volume = {77}, journal = {Brain, Behavior and Evolution}, number = {3}, issn = {0006-8977}, doi = {10.1159/000326211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196815}, pages = {136-146}, year = {2011}, abstract = {Desert ants of the genus Cataglyphis possess remarkable visual navigation capabilities. Although Cataglyphis species lack a trail pheromone system, Cataglyphis fortis employs olfactory cues for detecting nest and food sites. To investigate potential adaptations in primary olfactory centers of the brain of C. fortis, we analyzed olfactory glomeruli (odor processing units) in their antennal lobes and compared them to glomeruli in different Cataglyphis species. Using confocal imaging and 3D reconstruction, we analyzed the number, size and spatial arrangement of olfactory glomeruli in C. fortis, C.albicans, C.bicolor, C.rubra, and C.noda. Workers of all Cataglyphis species have smaller numbers of glomeruli (198-249) compared to those previously found in olfactory-guided ants. Analyses in 2 species of Formica - a genus closely related to Cataglyphis - revealed substantially higher numbers of olfactory glomeruli (c. 370), which is likely to reflect the importance of olfaction in these wood ant species. Comparisons between Cataglyphis species revealed 2 special features in C. fortis. First, with c. 198 C. fortis has the lowest number of glomeruli compared to all other species. Second, a conspicuously enlarged glomerulus is located close to the antennal nerve entrance. Males of C. fortis possess a significantly smaller number of glomeruli (c. 150) compared to female workers and queens. A prominent male-specific macroglomerulus likely to be involved in sex pheromone communication occupies a position different from that of the enlarged glomerulus in females. The behavioral significance of the enlarged glomerulus in female workers remains elusive. The fact that C. fortis inhabits microhabitats (salt pans) that are avoided by all other Cataglyphis species suggests that extreme ecological conditions may not only have resulted in adaptations of visual capabilities, but also in specializations of the olfactory system.}, language = {en} } @article{HeldBerzHensgenetal.2016, author = {Held, Martina and Berz, Annuska and Hensgen, Ronja and Muenz, Thomas S. and Scholl, Christina and R{\"o}ssler, Wolfgang and Homberg, Uwe and Pfeiffer, Keram}, title = {Microglomerular Synaptic Complexes in the Sky-Compass Network of the Honeybee Connect Parallel Pathways from the Anterior Optic Tubercle to the Central Complex}, series = {Frontiers in Behavioral Neuroscience}, volume = {10}, journal = {Frontiers in Behavioral Neuroscience}, number = {186}, doi = {10.3389/fnbeh.2016.00186}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165080}, year = {2016}, abstract = {While the ability of honeybees to navigate relying on sky-compass information has been investigated in a large number of behavioral studies, the underlying neuronal system has so far received less attention. The sky-compass pathway has recently been described from its input region, the dorsal rim area (DRA) of the compound eye, to the anterior optic tubercle (AOTU). The aim of this study is to reveal the connection from the AOTU to the central complex (CX). For this purpose, we investigated the anatomy of large microglomerular synaptic complexes in the medial and lateral bulbs (MBUs/LBUs) of the lateral complex (LX). The synaptic complexes are formed by tubercle-lateral accessory lobe neuron 1 (TuLAL1) neurons of the AOTU and GABAergic tangential neurons of the central body's (CB) lower division (TL neurons). Both TuLAL1 and TL neurons strongly resemble neurons forming these complexes in other insect species. We further investigated the ultrastructure of these synaptic complexes using transmission electron microscopy. We found that single large presynaptic terminals of TuLAL1 neurons enclose many small profiles (SPs) of TL neurons. The synaptic connections between these neurons are established by two types of synapses: divergent dyads and divergent tetrads. Our data support the assumption that these complexes are a highly conserved feature in the insect brain and play an important role in reliable signal transmission within the sky-compass pathway.}, language = {en} } @article{BeckerKucharskiRoessleretal.2016, author = {Becker, Nils and Kucharski, Robert and R{\"o}ssler, Wolfgang and Maleszka, Ryszard}, title = {Age-dependent transcriptional and epigenomic responses to light exposure in the honey bee brain}, series = {FEBS Open Bio}, volume = {6}, journal = {FEBS Open Bio}, number = {7}, doi = {10.1002/2211-5463.12084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147080}, pages = {622-639}, year = {2016}, abstract = {Light is a powerful environmental stimulus of special importance in social honey bees that undergo a behavioral transition from in-hive to outdoor foraging duties. Our previous work has shown that light exposure induces structural neuronal plasticity in the mushroom bodies (MBs), a brain center implicated in processing inputs from sensory modalities. Here, we extended these analyses to the molecular level to unravel light-induced transcriptomic and epigenomic changes in the honey bee brain. We have compared gene expression in brain compartments of 1- and 7-day-old light-exposed honey bees with age-matched dark-kept individuals. We have found a number of differentially expressed genes (DEGs), both novel and conserved, including several genes with reported roles in neuronal plasticity. Most of the DEGs show age-related changes in the amplitude of light-induced expression and are likely to be both developmentally and environmentally regulated. Some of the DEGs are either known to be methylated or are implicated in epigenetic processes suggesting that responses to light exposure are at least partly regulated at the epigenome level. Consistent with this idea light alters the DNA methylation pattern of bgm, one of the DEGs affected by light exposure, and the expression of microRNA miR-932. This confirms the usefulness of our approach to identify candidate genes for neuronal plasticity and provides evidence for the role of epigenetic processes in driving the molecular responses to visual stimulation.}, language = {en} } @article{FalibeneRocesRoessleretal.2016, author = {Falibene, Augustine and Roces, Flavio and R{\"o}ssler, Wolfgang and Groh, Claudia}, title = {Daily Thermal Fluctuations Experienced by Pupae via Rhythmic Nursing Behavior Increase Numbers of Mushroom Body Microglomeruli in the Adult Ant Brain}, series = {Frontiers in Behavioral Neuroscience}, volume = {10}, journal = {Frontiers in Behavioral Neuroscience}, number = {73}, doi = {10.3389/fnbeh.2016.00073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146711}, year = {2016}, abstract = {Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces). The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG) in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense) olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C) lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C), or at constant temperatures (25.4, 35.0°C). We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies.}, language = {en} } @article{FalibeneRocesRoessler2015, author = {Falibene, Augustina and Roces, Flavio and R{\"o}ssler, Wolfgang}, title = {Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants}, series = {Frontiers in Behavioural Neuroscience}, volume = {9}, journal = {Frontiers in Behavioural Neuroscience}, number = {84}, doi = {10.3389/fnbeh.2015.00084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148763}, year = {2015}, abstract = {Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MB) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning when ants still showed plant avoidance MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning.}, language = {en} } @article{SommerlandtSpaetheRoessleretal.2016, author = {Sommerlandt, Frank M. J. and Spaethe, Johannes and R{\"o}ssler, Wolfgang and Dyer, Adrian G.}, title = {Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0164386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147932}, pages = {e0164386}, year = {2016}, abstract = {Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-na{\"i}ve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.q}, language = {en} } @article{FalibeneRocesRoessler2015, author = {Falibene, Agustina and Roces, Flavio and R{\"o}ssler, Wolfgang}, title = {Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants}, series = {Frontiers in Behavioral Neuroscience}, volume = {9}, journal = {Frontiers in Behavioral Neuroscience}, number = {84}, doi = {10.3389/fnbeh.2015.00084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125522}, year = {2015}, abstract = {Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MBs) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning—when ants still showed plant avoidance—MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning.}, language = {en} } @article{StrubeBlossBrownSpaetheetal.2015, author = {Strube-Bloss, Martin F. and Brown, Austin and Spaethe, Johannes and Schmitt, Thomas and R{\"o}ssler, Wolfgang}, title = {Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0137413}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125875}, pages = {e0137413}, year = {2015}, abstract = {To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a 'dance' behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL) neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol). The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors.}, language = {en} } @article{OttoRubenwolfBurgeretal.2012, author = {Otto, Wolfgang and Rubenwolf, Peter C. and Burger, Maximilian and Fritsche, Hans-Martin and R{\"o}ßler, Wolfgang and May, Matthias and Hartmann, Arndt and Hofst{\"a}dter, Ferdinand and Wieland, Wolf F. and Denzinger, Stefan}, title = {Loss of aquaporin 3 protein expression constitutes an independent prognostic factor for progression-free survival: an immunohistochemical study on stage pT1 urothelial bladder cancer}, series = {BMC Cancer}, volume = {12}, journal = {BMC Cancer}, number = {459}, doi = {10.1186/1471-2407-12-459}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135679}, year = {2012}, abstract = {Background: Treatment of patients with stage pT1 urothelial bladder cancer (UBC) continues to be a challenge due to its unpredictable clinical course. Reliable molecular markers that help to determine appropriate individual treatment are still lacking. Loss of aquaporin (AQP) 3 protein expression has previously been shown in muscle-invasive UBC. The aim of the present study was to investigate the prognostic value of AQP3 protein expression with regard to the prognosis of stage pT1 UBC. Method: AQP 3 protein expression was investigated by immunohistochemistry in specimens of 87 stage T1 UBC patients, who were diagnosed by transurethral resection of the bladder (TURB) and subsequent second resection at a high-volume urological centre between 2002 and 2009. Patients underwent adjuvant instillation therapy with Bacillus Calmette-Guerin (BCG). Loss of AQP3 protein expression was defined as complete absence of the protein within the whole tumour. Expression status was correlated retrospectively with clinicopathological and follow-up data (median: 31 months). Multivariate Cox regression analysis was used to assess the value of AQP3 tumour expression with regard to recurrence-free (RFS), progression-free (PFS) and cancer-specific survival (CSS). RFS, PFS and CSS were calculated by Kaplan-Meier analysis and Log rank test. Results: 59\% of patients were shown to exhibit AQP3-positive tumours, whereas 41\% of tumours did not express the marker. Loss of AQP3 protein expression was associated with a statistically significantly worse PFS (20\% vs. 72\%, p=0.020). This finding was confirmed by multivariate Cox regression analysis (HR 7.58, CI 1.29 - 44.68; p=0.025). Conclusions: Loss of AQP3 protein expression in pT1 UBC appears to play a key role in disease progression and is associated with worse PFS. Considering its potential prognostic value, assessment of AQP3 protein expression could be used to help stratify the behavior of patients with pT1 UBC.}, language = {en} } @article{RoesslerBrill2013, author = {R{\"o}ssler, Wolfgang and Brill, Martin F.}, title = {Parallel processing in the honeybee olfactory pathway: structure, function, and evolution}, series = {Journal of Comparative Physiology A}, volume = {199}, journal = {Journal of Comparative Physiology A}, doi = {10.1007/s00359-013-0821-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132548}, pages = {981-996}, year = {2013}, abstract = {Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to "what-" and "where" subsystems in visual pathways, this suggests two parallel olfactory subsystems providing "what-" (quality) and "when" (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.}, language = {en} } @article{AlbertSpaetheGruebeletal.2014, author = {Albert, Štefan and Spaethe, Johannes and Gr{\"u}bel, Kornelia and R{\"o}ssler, Wolfgang}, title = {Royal jelly-like protein localization reveals differences in hypopharyngeal glands buildup and conserved expression pattern in brains of bumblebees and honeybees}, doi = {10.1242/bio.20147211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112733}, year = {2014}, abstract = {Royal jelly proteins (MRJPs) of the honeybee bear several open questions. One of them is their expression in tissues other than the hypopharyngeal glands (HGs), the site of royal jelly production. The sole MRJP-like gene of the bumblebee, Bombus terrestris (BtRJPL), represents a pre-diversification stage of the MRJP gene evolution in bees. Here we investigate the expression of BtRJPL in the HGs and the brain of bumblebees. Comparison of the HGs of bumblebees and honeybees revealed striking differences in their morphology with respect to sex- and caste-specific appearance, number of cells per acinus, and filamentous actin (F-actin) rings. At the cellular level, we found a temporary F-actin-covered meshwork in the secretory cells, which suggests a role for actin in the biogenesis of the end apparatus in HGs. Using immunohistochemical localization, we show that BtRJPL is expressed in the bumblebee brain, predominantly in the Kenyon cells of the mushroom bodies, the site of sensory integration in insects, and in the optic lobes. Our data suggest that a dual glandbrain function preceded the multiplication of MRJPs in the honeybee lineage. In the course of the honeybee evolution, HGs dramatically changed their morphology in order to serve a food-producing function.}, language = {en} } @article{AntonRoessler2021, author = {Anton, Sylvia and R{\"o}ssler, Wolfgang}, title = {Plasticity and modulation of olfactory circuits in insects}, series = {Cell and Tissue Research}, volume = {383}, journal = {Cell and Tissue Research}, issn = {0302-766X}, doi = {10.1007/s00441-020-03329-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235820}, pages = {149-164}, year = {2021}, abstract = {Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.}, language = {en} } @article{FleischmannGrobRoessler2022, author = {Fleischmann, Pauline N. and Grob, Robin and R{\"o}ssler, Wolfgang}, title = {Magnetosensation during re-learning walks in desert ants (Cataglyphis nodus)}, series = {Journal of Comparative Physiology A}, volume = {208}, journal = {Journal of Comparative Physiology A}, number = {1}, issn = {1432-1351}, doi = {10.1007/s00359-021-01511-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266556}, pages = {125-133}, year = {2022}, abstract = {At the beginning of their foraging careers, Cataglyphis desert ants calibrate their compass systems and learn the visual panorama surrounding the nest entrance. For that, they perform well-structured initial learning walks. During rotational body movements (pirouettes), na{\"i}ve ants (novices) gaze back to the nest entrance to memorize their way back to the nest. To align their gaze directions, they rely on the geomagnetic field as a compass cue. In contrast, experienced ants (foragers) use celestial compass cues for path integration during food search. If the panorama at the nest entrance is changed, foragers perform re-learning walks prior to heading out on new foraging excursions. Here, we show that initial learning walks and re-learning walks are structurally different. During re-learning walks, foragers circle around the nest entrance before leaving the nest area to search for food. During pirouettes, they do not gaze back to the nest entrance. In addition, foragers do not use the magnetic field as a compass cue to align their gaze directions during re-learning walk pirouettes. Nevertheless, magnetic alterations during re-learning walks under manipulated panoramic conditions induce changes in nest-directed views indicating that foragers are still magnetosensitive in a cue conflict situation.}, language = {en} } @article{RoesslerSpaetheGroh2017, author = {R{\"o}ssler, Wolfgang and Spaethe, Johannes and Groh, Claudia}, title = {Pitfalls of using confocal-microscopy based automated quantification of synaptic complexes in honeybee mushroom bodies (response to Peng and Yang 2016)}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {9786}, doi = {10.1038/s41598-017-09967-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170451}, year = {2017}, abstract = {A recent study by Peng and Yang in Scientific Reports using confocal-microscopy based automated quantification of anti-synapsin labeled microglomeruli in the mushroom bodies of honeybee brains reports potentially incorrect numbers of microglomerular densities. Whereas several previous studies using visually supervised or automated counts from confocal images and analyses of serial 3D electron-microscopy data reported consistent numbers of synaptic complexes per volume, Peng and Yang revealed extremely low numbers differing by a factor of 18 or more from those obtained in visually supervised counts, and by a factor 22-180 from numbers in two other studies using automated counts. This extreme discrepancy is especially disturbing as close comparison of raw confocal images of anti-synapsin labeled whole-mount brain preparations are highly similar across these studies. We conclude that these discrepancies may reside in potential misapplication of confocal imaging followed by erroneous use of automated image analysis software. Consequently, the reported microglomerular densities during maturation and after manipulation by insecticides require validation by application of appropriate confocal imaging methods and analyses tools that rely on skilled observers. We suggest several improvements towards more reliable or standardized automated or semi-automated synapse counts in whole mount preparations of insect brains.}, language = {en} } @article{HurdGruebelWojciechowskietal.2021, author = {Hurd, Paul J. and Gr{\"u}bel, Kornelia and Wojciechowski, Marek and Maleszka, Ryszard and R{\"o}ssler, Wolfgang}, title = {Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-86078-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260059}, pages = {6852}, year = {2021}, abstract = {In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 mu m long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (similar to 2.1 mu m). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain.}, language = {en} } @article{GrobTritscherGruebeletal.2021, author = {Grob, Robin and Tritscher, Clara and Gr{\"u}bel, Kornelia and Stigloher, Christian and Groh, Claudia and Fleischmann, Pauline N. and R{\"o}ssler, Wolfgang}, title = {Johnston's organ and its central projections in Cataglyphis desert ants}, series = {Journal of Comparative Neurology}, volume = {529}, journal = {Journal of Comparative Neurology}, number = {8}, doi = {10.1002/cne.25077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225679}, pages = {2138 -- 2155}, year = {2021}, abstract = {The Johnston's organ (JO) in the insect antenna is a multisensory organ involved in several navigational tasks including wind-compass orientation, flight control, graviception, and, possibly, magnetoreception. Here we investigate the three dimensional anatomy of the JO and its neuronal projections into the brain of the desert ant Cataglyphis, a marvelous long-distance navigator. The JO of C. nodus workers consists of 40 scolopidia comprising three sensory neurons each. The numbers of scolopidia slightly vary between different sexes (female/male) and castes (worker/queen). Individual scolopidia attach to the intersegmental membrane between pedicel and flagellum of the antenna and line up in a ring-like organization. Three JO nerves project along the two antennal nerve branches into the brain. Anterograde double staining of the antennal afferents revealed that JO receptor neurons project to several distinct neuropils in the central brain. The T5 tract projects into the antennal mechanosensory and motor center (AMMC), while the T6 tract bypasses the AMMC via the saddle and forms collaterals terminating in the posterior slope (PS) (T6I), the ventral complex (T6II), and the ventrolateral protocerebrum (T6III). Double labeling of JO and ocellar afferents revealed that input from the JO and visual information from the ocelli converge in tight apposition in the PS. The general JO anatomy and its central projection patterns resemble situations in honeybees and Drosophila. The multisensory nature of the JO together with its projections to multisensory neuropils in the ant brain likely serves synchronization and calibration of different sensory modalities during the ontogeny of navigation in Cataglyphis.}, language = {en} } @article{HabensteinSchmittLiessemetal.2021, author = {Habenstein, Jens and Schmitt, Franziska and Liessem, Sander and Ly, Alice and Trede, Dennis and Wegener, Christian and Predel, Reinhard and R{\"o}ssler, Wolfgang and Neupert, Susanne}, title = {Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus}, series = {Journal of Neurochemistry}, volume = {158}, journal = {Journal of Neurochemistry}, number = {2}, doi = {10.1111/jnc.15346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239917}, pages = {391 -- 412}, year = {2021}, abstract = {Behavioral flexibility is an important cornerstone for the ecological success of animals. Social Cataglyphis nodus ants with their age-related polyethism characterized by age-related behavioral phenotypes represent a prime example for behavioral flexibility. We propose neuropeptides as powerful candidates for the flexible modulation of age-related behavioral transitions in individual ants. As the neuropeptidome of C. nodus was unknown, we collected a comprehensive peptidomic data set obtained by transcriptome analysis of the ants' central nervous system combined with brain extract analysis by Q-Exactive Orbitrap mass spectrometry (MS) and direct tissue profiling of different regions of the brain by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. In total, we identified 71 peptides with likely bioactive function, encoded on 49 neuropeptide-, neuropeptide-like, and protein hormone prepropeptide genes, including a novel neuropeptide-like gene (fliktin). We next characterized the spatial distribution of a subset of peptides encoded on 16 precursor proteins with high resolution by MALDI MS imaging (MALDI MSI) on 14 µm brain sections. The accuracy of our MSI data were confirmed by matching the immunostaining patterns for tachykinins with MSI ion images from consecutive brain sections. Our data provide a solid framework for future research into spatially resolved qualitative and quantitative peptidomic changes associated with stage-specific behavioral transitions and the functional role of neuropeptides in Cataglyphis ants.}, language = {en} } @article{GrobFleischmannGruebeletal.2017, author = {Grob, Robin and Fleischmann, Pauline N. and Gr{\"u}bel, Kornelia and Wehner, R{\"u}diger and R{\"o}ssler, Wolfgang}, title = {The role of celestial compass information in Cataglyphis ants during learning walks and for neuroplasticity in the central complex and mushroom bodies}, series = {Frontiers in Behavioral Neuroscience}, volume = {11}, journal = {Frontiers in Behavioral Neuroscience}, number = {226}, doi = {10.3389/fnbeh.2017.00226}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159235}, year = {2017}, abstract = {Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance—presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system.}, language = {en} } @article{GrohRoessler2020, author = {Groh, Claudia and R{\"o}ssler, Wolfgang}, title = {Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee}, series = {Insects}, volume = {11}, journal = {Insects}, number = {1}, issn = {2075-4450}, doi = {10.3390/insects11010043}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200774}, year = {2020}, abstract = {Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect.}, language = {en} } @article{KropfRoessler2018, author = {Kropf, Jan and R{\"o}ssler, Wolfgang}, title = {In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee}, series = {PLoS ONE}, volume = {13}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0191425}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175869}, pages = {e0191425}, year = {2018}, abstract = {The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN) convey olfactory information on ~900 projection neurons (PN) in the antennal lobe (AL). To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB). This pathway comprises the medial (m-ALT) and the lateral antennal lobe tract (l-ALT). PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC) that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level.}, language = {en} } @article{FleischmannGrobRoessler2020, author = {Fleischmann, Pauline N. and Grob, Robin and R{\"o}ssler, Wolfgang}, title = {Kompass im Kopf : wie W{\"u}stenameisen lernen heimzukehren}, series = {Biologie in unserer Zeit}, volume = {50}, journal = {Biologie in unserer Zeit}, number = {2}, issn = {1521-415X}, doi = {10.1002/biuz.202010699}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219260}, pages = {100-109}, year = {2020}, abstract = {Erfolgreiche r{\"a}umliche Orientierung ist f{\"u}r viele Tiere eine allt{\"a}gliche Herausforderung. Cataglyphis-W{\"u}stenameisen sind bekannt f{\"u}r ihre Navigationsf{\"a}higkeiten, mit deren Hilfe sie nach langen Futtersuchl{\"a}ufen problemlos zum Nest zur{\"u}ckfinden. Wie aber nehmen naive Ameisen ihre Navigationssysteme in Betrieb? Nach mehrw{\"o}chigem Innendienst im dunklen Nest werden sie zu Sammlerinnen bei hellem Sonnenschein. Dieser Wechsel erfordert einen drastischen Wandel im Verhalten sowie neuronale Ver{\"a}nderungen im Gehirn. Erfahrene Ameisen orientieren sich vor allem visuell, sie nutzen einen Himmelskompass und Landmarkenpanoramen. Daher absolvieren naive Ameisen stereotype Lernl{\"a}ufe, um ihren Kompass zu kalibrieren und die Nestumgebung kennenzulernen. W{\"a}hrend der Lernl{\"a}ufe blicken sie wiederholt zum Nesteingang zur{\"u}ck und pr{\"a}gen sich so ihren Heimweg ein. Zur Ausrichtung ihrer Blicke nutzen sie das Erdmagnetfeld als Kompassreferenz. Cataglyphis-Ameisen besitzen hierf{\"u}r einen Magnetkompass, der bislang unbekannt war.}, language = {de} } @article{GrobHeinigGruebeletal.2021, author = {Grob, Robin and Heinig, Niklas and Gr{\"u}bel, Kornelia and R{\"o}ssler, Wolfgang and Fleischmann, Pauline N.}, title = {Sex-specific and caste-specific brain adaptations related to spatial orientation in Cataglyphis ants}, series = {Journal of Comparative Neurology}, volume = {529}, journal = {Journal of Comparative Neurology}, number = {18}, doi = {10.1002/cne.25221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257299}, pages = {3882-3892}, year = {2021}, abstract = {Cataglyphis desert ants are charismatic central place foragers. After long-ranging foraging trips, individual workers navigate back to their nest relying mostly on visual cues. The reproductive caste faces other orientation challenges, i.e. mate finding and colony foundation. Here we compare brain structures involved in spatial orientation of Cataglyphis nodus males, gynes, and foragers by quantifying relative neuropil volumes associated with two visual pathways, and numbers and volumes of antennal lobe (AL) olfactory glomeruli. Furthermore, we determined absolute numbers of synaptic complexes in visual and olfactory regions of the mushroom bodies (MB) and a major relay station of the sky-compass pathway to the central complex (CX). Both female castes possess enlarged brain centers for sensory integration, learning, and memory, reflected in voluminous MBs containing about twice the numbers of synaptic complexes compared with males. Overall, male brains are smaller compared with both female castes, but the relative volumes of the optic lobes and CX are enlarged indicating the importance of visual guidance during innate behaviors. Male ALs contain greatly enlarged glomeruli, presumably involved in sex-pheromone detection. Adaptations at both the neuropil and synaptic levels clearly reflect differences in sex-specific and caste-specific demands for sensory processing and behavioral plasticity underlying spatial orientation.}, language = {en} } @article{HabensteinThammRoessler2021, author = {Habenstein, Jens and Thamm, Markus and R{\"o}ssler, Wolfgang}, title = {Neuropeptides as potential modulators of behavioral transitions in the ant Cataglyphis nodus}, series = {Journal of Comparative Neurology}, volume = {529}, journal = {Journal of Comparative Neurology}, number = {12}, doi = {10.1002/cne.25166}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244751}, pages = {3155 -- 3170}, year = {2021}, abstract = {Age-related behavioral plasticity is a major prerequisite for the ecological success of insect societies. Although ecological aspects of behavioral flexibility have been targeted in many studies, the underlying intrinsic mechanisms controlling the diverse changes in behavior along the individual life history of social insects are not completely understood. Recently, the neuropeptides allatostatin-A, corazonin, and tachykinin have been associated with the regulation of behavioral transitions in social insects. Here, we investigated changes in brain localization and expression of these neuropeptides following major behavioral transitions in Cataglyphis nodus ants. Our immunohistochemical analyses in the brain revealed that the overall branching pattern of neurons immunoreactive (ir) for the three neuropeptides is largely independent of the behavioral stages. Numerous allatostatin-A- and tachykinin-ir neurons innervate primary sensory neuropils and high-order integration centers of the brain. In contrast, the number of corazonergic neurons is restricted to only four neurons per brain hemisphere with cell bodies located in the pars lateralis and axons extending to the medial protocerebrum and the retrocerebral complex. Most interestingly, the cell-body volumes of these neurons are significantly increased in foragers compared to freshly eclosed ants and interior workers. Quantification of mRNA expression levels revealed a stage-related change in the expression of allatostatin-A and corazonin mRNA in the brain. Given the presence of the neuropeptides in major control centers of the brain and the neurohemal organs, these mRNA-changes strongly suggest an important modulatory role of both neuropeptides in the behavioral maturation of Cataglyphis ants.}, language = {en} } @article{HabensteinAminiGruebeletal.2020, author = {Habenstein, Jens and Amini, Emad and Gr{\"u}bel, Kornelia and el Jundi, Basil and R{\"o}ssler, Wolfgang}, title = {The brain of Cataglyphis ants: Neuronal organization and visual projections}, series = {Journal of Comparative Neurology}, volume = {528}, journal = {Journal of Comparative Neurology}, number = {18}, doi = {10.1002/cne.24934}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218212}, pages = {3479 -- 3506}, year = {2020}, abstract = {Cataglyphis ants are known for their outstanding navigational abilities. They return to their inconspicuous nest after far-reaching foraging trips using path integration, and whenever available, learn and memorize visual features of panoramic sceneries. To achieve this, the ants combine directional visual information from celestial cues and panoramic scenes with distance information from an intrinsic odometer. The largely vision-based navigation in Cataglyphis requires sophisticated neuronal networks to process the broad repertoire of visual stimuli. Although Cataglyphis ants have been subjected to many neuroethological studies, little is known about the general neuronal organization of their central brain and the visual pathways beyond major circuits. Here, we provide a comprehensive, three-dimensional neuronal map of synapse-rich neuropils in the brain of Cataglyphis nodus including major connecting fiber systems. In addition, we examined neuronal tracts underlying the processing of visual information in more detail. This study revealed a total of 33 brain neuropils and 30 neuronal fiber tracts including six distinct tracts between the optic lobes and the cerebrum. We also discuss the importance of comparative studies on insect brain architecture for a profound understanding of neuronal networks and their function.}, language = {en} } @article{RoesslerGrobFleischmann2023, author = {R{\"o}ssler, Wolfgang and Grob, Robin and Fleischmann, Pauline N.}, title = {The role of learning-walk related multisensory experience in rewiring visual circuits in the desert ant brain}, series = {Journal of Comparative Physiology A}, volume = {209}, journal = {Journal of Comparative Physiology A}, number = {4}, doi = {10.1007/s00359-022-01600-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325096}, pages = {605-623}, year = {2023}, abstract = {Efficient spatial orientation in the natural environment is crucial for the survival of most animal species. Cataglyphis desert ants possess excellent navigational skills. After far-ranging foraging excursions, the ants return to their inconspicuous nest entrance using celestial and panoramic cues. This review focuses on the question about how na{\"i}ve ants acquire the necessary spatial information and adjust their visual compass systems. Na{\"i}ve ants perform structured learning walks during their transition from the dark nest interior to foraging under bright sunlight. During initial learning walks, the ants perform rotational movements with nest-directed views using the earth's magnetic field as an earthbound compass reference. Experimental manipulations demonstrate that specific sky compass cues trigger structural neuronal plasticity in visual circuits to integration centers in the central complex and mushroom bodies. During learning walks, rotation of the sky-polarization pattern is required for an increase in volume and synaptic complexes in both integration centers. In contrast, passive light exposure triggers light-spectrum (especially UV light) dependent changes in synaptic complexes upstream of the central complex. We discuss a multisensory circuit model in the ant brain for pathways mediating structural neuroplasticity at different levels following passive light exposure and multisensory experience during the performance of learning walks.}, language = {en} } @article{ZupancRoessler2022, author = {Zupanc, G{\"u}nther K. H. and R{\"o}ssler, Wolfgang}, title = {Government funding of research beyond biomedicine: challenges and opportunities for neuroethology}, series = {Journal of Comparative Physiology A}, volume = {208}, journal = {Journal of Comparative Physiology A}, number = {3}, doi = {10.1007/s00359-022-01552-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325113}, pages = {443-456}, year = {2022}, abstract = {Curiosity-driven research is fundamental for neuroethology and depends crucially on governmental funding. Here, we highlight similarities and differences in funding of curiosity-driven research across countries by comparing two major funding agencies—the National Science Foundation (NSF) in the United States and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). We interviewed representatives from each of the two agencies, focusing on general funding trends, levels of young investigator support, career-life balance, and international collaborations. While our analysis revealed a negative trend in NSF funding of biological research, including curiosity-driven research, German researchers in these areas have benefited from a robust positive trend in DFG funding. The main reason for the decrease in curiosity-driven research in the US is that the NSF has only partially been able to compensate for the funding gap resulting from the National Institutes of Health restricting their support to biomedical research using select model organisms. Notwithstanding some differences in funding programs, particularly those relevant for scientists in the postdoctoral phase, both the NSF and DFG clearly support curiosity-driven research.}, language = {en} }