@article{NorrmenFigliaLebrunJulienetal.2014, author = {Norrmen, Camilla and Figlia, Gianluca and Lebrun-Julien, Frederic and Pereira, Jorge A. and Tr{\"o}tzm{\"u}ller, Martin and K{\"o}feler, Harald C. and Rantanen, Ville and Wessig, Carsten and van Deijk, Anne-Lieke F. and Smit, August B. and Verheijen, Mark H. G. and R{\"u}egg, Markus A. and Hall, Michael N. and Suter, Ueli}, title = {mTORC1 Controls PNS Myelination along the mTORC1-RXR gamma-SREBP-Lipid Biosynthesis Axis in Schwann Cells}, series = {Cell Reports}, volume = {9}, journal = {Cell Reports}, number = {2}, issn = {2211-1247}, doi = {10.1016/j.celrep.2014.09.001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114847}, pages = {646-660}, year = {2014}, abstract = {Myelin formation during peripheral nervous system (PNS) development, and reformation after injury and in disease, requires multiple intrinsic and extrinsic signals. Akt/mTOR signaling has emerged as a major player involved, but the molecular mechanisms and downstream effectors are virtually unknown. Here, we have used Schwann-cell-specific conditional gene ablation of raptor and rictor, which encode essential components of the mTOR complexes 1 (mTORC1) and 2 (mTORC2), respectively, to demonstrate that mTORC1 controls PNS myelination during development. In this process, mTORC1 regulates lipid biosynthesis via sterol regulatory element-binding proteins (SREBPs). This course of action is mediated by the nuclear receptor RXRg, which transcriptionally regulates SREBP1c downstream of mTORC1. Absence of mTORC1 causes delayed myelination initiation as well as hypomyelination, together with abnormal lipid composition and decreased nerve conduction velocity. Thus, we have identified the mTORC1-RXR gamma-SREBP axis controlling lipid biosynthesis as a major contributor to proper peripheral nerve function.}, language = {en} }