@article{BoltzeKleinschnitzReymannetal.2012, author = {Boltze, Johannes and Kleinschnitz, Christoph and Reymann, Klaus G. and Reiser, Georg and Wagner, Daniel-Christoph and Kranz, Alexander and Michalski, Dominik}, title = {Neurovascular pathophysiology in cerebral ischemia, dementia and the ageing brain - current trends in basic, translational and clinical research}, series = {Experimental \& Translational Stroke Medicine}, volume = {4}, journal = {Experimental \& Translational Stroke Medicine}, number = {14}, doi = {doi:10.1186/2040-7378-4-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126679}, year = {2012}, abstract = {The 7th International Symposium on Neuroprotection and Neurorepair was held from May 2nd to May 5th, 2012 in Potsdam, Germany. The symposium, which directly continues the successful Magdeburg meeting series, attracted over 330 colleagues from 29 countries to discuss recent findings and advances in the field. The focus of the 2012 symposium was widened from stroke and traumatic brain injury to neurodegenerative diseases, notably dementia, and more generally the ageing brain. Thereby, emphasis was given on neurovascular aspects of neurodegeneration and stroke including the blood-brain barrier, recent findings regarding the pathomechanism of Alzheimer's disease, and brain imaging approaches. In addition, neurobiochemical aspects of neuroprotection, the role of astrogliosis, the clinical progress of cell-based approaches as well as translational hurdles and opportunities were discussed in-depth. This review summarizes some of the most stimulating discussions and reports from the meeting.}, language = {en} } @article{KleinschnitzMenclGarzetal.2013, author = {Kleinschnitz, Christoph and Mencl, Stine and Garz, Cornelia and Niklass, Solveig and Braun, Holger and G{\"o}b, Eva and Homola, Gy{\"o}rgy and Heinze, Hans-Jochen and Reymann, Klaus G. and Schreiber, Stefanie}, title = {Early microvascular dysfunction in cerebral small vessel disease is not detectable on 3.0 Tesla magnetic resonance imaging: a longitudinal study in spontaneously hypertensive stroke-prone rats}, series = {Experimental \& Translational Stroke Medicine}, journal = {Experimental \& Translational Stroke Medicine}, doi = {10.1186/2040-7378-5-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97056}, year = {2013}, abstract = {Background Human cerebral small vessel disease (CSVD) has distinct histopathologic and imaging findings in its advanced stages. In spontaneously hypertensive stroke-prone rats (SHRSP), a well-established animal model of CSVD, we recently demonstrated that cerebral microangiopathy is initiated by early microvascular dysfunction leading to the breakdown of the blood-brain barrier and an activated coagulatory state resulting in capillary and arteriolar erythrocyte accumulations (stases). In the present study, we investigated whether initial microvascular dysfunction and other stages of the pathologic CSVD cascade can be detected by serial magnetic resonance imaging (MRI). Findings Fourteen SHRSP and three control (Wistar) rats (aged 26-44 weeks) were investigated biweekly by 3.0 Tesla (3 T) MRI. After perfusion, brains were stained with hematoxylin-eosin and histology was correlated with MRI data. Three SHRSP developed terminal CSVD stages including cortical, hippocampal, and striatal infarcts and macrohemorrhages, which could be detected consistently by MRI. Corresponding histology showed small vessel thromboses and increased numbers of small perivascular bleeds in the infarcted areas. However, 3 T MRI failed to visualize intravascular erythrocyte accumulations, even in those brain regions with the highest densities of affected vessels and the largest vessels affected by stases, as well as failing to detect small perivascular bleeds. Conclusion Serial MRI at a field strength of 3 T failed to detect the initial microvascular dysfunction and subsequent small perivascular bleeds in SHRSP; only terminal stages of cerebral microangiopathy were reliably detected. Further investigations at higher magnetic field strengths (7 T) using blood- and flow-sensitive sequences are currently underway.}, language = {en} }