@article{RoemerRoces2014, author = {R{\"o}mer, Daniela and Roces, Flavio}, title = {Nest Enlargement in Leaf-Cutting Ants: Relocated Brood and Fungus Trigger the Excavation of New Chambers}, doi = {10.1371/journal.pone.0097872}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112860}, year = {2014}, abstract = {During colony growth, leaf-cutting ants enlarge their nests by excavating tunnels and chambers housing their fungus gardens and brood. Workers are expected to excavate new nest chambers at locations across the soil profile that offer suitable environmental conditions for brood and fungus rearing. It is an open question whether new chambers are excavated in advance, or will emerge around brood or fungus initially relocated to a suitable site in a previously-excavated tunnel. In the laboratory, we investigated the mechanisms underlying the excavation of new nest chambers in the leaf-cutting ant Acromyrmex lundi. Specifically, we asked whether workers relocate brood and fungus to suitable nest locations, and to what extent the relocated items trigger the excavation of a nest chamber and influence its shape. When brood and fungus were exposed to unfavorable environmental conditions, either low temperatures or low humidity, both were relocated, but ants clearly preferred to relocate the brood first. Workers relocated fungus to places containing brood, demonstrating that subsequent fungus relocation spatially follows the brood deposition. In addition, more ants aggregated at sites containing brood. When presented with a choice between two otherwise identical digging sites, but one containing brood, ants' excavation activity was higher at this site, and the shape of the excavated cavity was more rounded and chamber-like. The presence of fungus also led to the excavation of rounder shapes, with higher excavation activity at the site that also contained brood. We argue that during colony growth, workers preferentially relocate brood to suitable locations along a tunnel, and that relocated brood spatially guides fungus relocation and leads to increased digging activity around them. We suggest that nest chambers are not excavated in advance, but emerge through a self-organized process resulting from the aggregation of workers and their density-dependent digging behavior around the relocated brood and fungus.}, language = {en} } @article{RoemerCosarinskyRoces2020, author = {R{\"o}mer, Daniela and Cosarinsky, Marcela I. and Roces, Flavio}, title = {Selection and spatial arrangement of building materials during the construction of nest turrets by grass-cutting ants}, series = {Royal Society Open Science}, volume = {7}, journal = {Royal Society Open Science}, doi = {10.1098/rsos.201312}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230458}, year = {2020}, abstract = {Ants build complex nest structures by reacting to simple, local stimuli. While underground nests result from the space generated by digging, some leaf- and grass-cutting ants also construct conspicuous aboveground turrets around nest openings. We investigated whether the selection of specific building materials occurs during turret construction in Acromyrmex fracticornis grass-cutting ants, and asked whether single building decisions at the beginning can modify the final turret architecture. To quantify workers' material selection, the original nest turret was removed and a choice between two artificial building materials, thin and thick sticks, was offered for rebuilding. Workers preferred thick sticks at the very beginning of turret construction, showed varying preferences thereafter, and changed to prefer thin sticks for the upper, final part of the turret, indicating that they selected different building materials over time to create a stable structure. The impact of a single building choice on turret architecture was evaluated by placing artificial beams that divided a colony's nest entrance at the beginning of turret rebuilding. Splitting the nest entrance led to the self-organized construction of turrets with branched galleries ending in multiple openings, showing that the spatial location of a single building material can strongly influence turret morphology.}, language = {en} } @article{CosarinskyRoemerRoces2020, author = {Cosarinsky, Marcela I. and R{\"o}mer, Daniela and Roces, Flavio}, title = {Nest Turrets of Acromyrmex Grass-Cutting Ants: Micromorphology Reveals Building Techniques and Construction Dynamics}, series = {Insects}, volume = {11}, journal = {Insects}, number = {2}, issn = {2075-4450}, doi = {10.3390/insects11020140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200680}, year = {2020}, abstract = {Acromyrmex fracticornis grass-cutting ants construct conspicuous chimney-shaped nest turrets made of intermeshed grass fragments. We asked whether turrets are constructed by merely piling up nearby materials around the entrance, or whether ants incorporate different materials as the turret develops. By removing the original nest turrets and following their rebuilding process over three consecutive days, age-dependent changes in wall morphology and inner lining fabrics were characterized. Micromorphological descriptions based on thin sections of turret walls revealed the building behaviors involved. Ants started by collecting nearby twigs and dry grass fragments that are piled up around the nest entrance. Several large fragments held the structure like beams. As a net-like structure grew, soil pellets were placed in between the intermeshed plant fragments from the turret base to the top, reinforcing the structure. Concomitantly, the turret inner wall was lined with soil pellets, starting from the base. Therefore, the consolidation of the turret occurred both over time and from its base upwards. It is argued that nest turrets do not simply arise by the arbitrary deposition of nearby materials, and that workers selectively incorporate large materials at the beginning, and respond to the developing structure by reinforcing the intermeshed plant fragments over time.}, language = {en} } @article{RoemerBollazziRoces2017, author = {R{\"o}mer, Daniela and Bollazzi, Martin and Roces, Flavio}, title = {Carbon dioxide sensing in an obligate insect-fungus symbiosis: CO\(_{2}\) preferences of leaf-cutting ants to rear their mutualistic fungus}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0174597}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159561}, pages = {e0174597}, year = {2017}, abstract = {Defense against biotic or abiotic stresses is one of the benefits of living in symbiosis. Leaf-cutting ants, which live in an obligate mutualism with a fungus, attenuate thermal and desiccation stress of their partner through behavioral responses, by choosing suitable places for fungus-rearing across the soil profile. The underground environment also presents hypoxic (low oxygen) and hypercapnic (high carbon dioxide) conditions, which can negatively influence the symbiont. Here, we investigated whether workers of the leaf-cutting ant Acromyrmex lundii use the CO\(_{2}\) concentration as an orientation cue when selecting a place to locate their fungus garden, and whether they show preferences for specific CO\(_{2}\) concentrations. We also evaluated whether levels preferred by workers for fungus-rearing differ from those selected for themselves. In the laboratory, CO\(_{2}\) preferences were assessed in binary choices between chambers with different CO\(_{2}\) concentrations, by quantifying number of workers in each chamber and amount of relocated fungus. Leaf-cutting ants used the CO\(_{2}\) concentration as a spatial cue when selecting places for fungus-rearing. A. lundii preferred intermediate CO\(_{2}\) levels, between 1 and 3\%, as they would encounter at soil depths where their nest chambers are located. In addition, workers avoided both atmospheric and high CO\(_{2}\) levels as they would occur outside the nest and at deeper soil layers, respectively. In order to prevent fungus desiccation, however, workers relocated fungus to high CO\(_{2}\) levels, which were otherwise avoided. Workers' CO\(_{2}\) preferences for themselves showed no clear-cut pattern. We suggest that workers avoid both atmospheric and high CO\(_{2}\) concentrations not because they are detrimental for themselves, but because of their consequences for the symbiotic partner. Whether the preferred CO\(_{2}\) concentrations are beneficial for symbiont growth remains to be investigated, as well as whether the observed preferences for fungus-rearing influences the ants' decisions where to excavate new chambers across the soil profile.}, language = {en} } @article{RoemerAguilarMeyeretal.2022, author = {R{\"o}mer, Daniela and Aguilar, Gonzalo Pacheco and Meyer, Annika and Roces, Flavio}, title = {Symbiont demand guides resource supply: leaf-cutting ants preferentially deliver their harvested fragments to undernourished fungus gardens}, series = {The Science of Nature}, volume = {109}, journal = {The Science of Nature}, number = {3}, doi = {10.1007/s00114-022-01797-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325080}, year = {2022}, abstract = {Leaf-cutting ants are highly successful herbivores in the Neotropics. They forage large amounts of fresh plant material to nourish a symbiotic fungus that sustains the colony. It is unknown how workers organize the intra-nest distribution of resources, and whether they respond to increasing demands in some fungus gardens by adjusting the amount of delivered resources accordingly. In laboratory experiments, we analyzed the spatial distribution of collected leaf fragments among nest chambers in Acromyrmex ambiguus leaf-cutting ants, and how it changed when one of the fungus gardens experienced undernourishment. Plant fragments were evenly distributed among nest chambers when the fungal symbiont was well nourished. That pattern changed when one of the fungus gardens was undernourished and had a higher leaf demand, resulting in more leaf discs delivered to the undernourished fungus garden over at least 2 days after deprivation. Some ants bypassed nourished gardens to directly deliver their resource to the chamber with higher nutritional demand. We hypothesize that cues arising from that chamber might be used for orientation and/or that informed individuals, presumably stemming from the undernourished chamber, may preferentially orient to them.}, language = {en} }