@article{MetzenmacherVaraljaiHegeduesetal.2020, author = {Metzenmacher, Martin and V{\´a}raljai, Ren{\´a}ta and Heged{\"u}s, Balazs and Cima, Igor and Forster, Jan and Schramm, Alexander and Scheffler, Bj{\"o}rn and Horn, Peter A. and Klein, Christoph A. and Szarvas, Tibor and Reis, Hennig and Bielefeld, Nicola and Roesch, Alexander and Aigner, Clemens and Kunzmann, Volker and Wiesweg, Marcel and Siveke, Jens T. and Schuler, Martin and Lueong, Smiths S.}, title = {Plasma Next Generation Sequencing and Droplet Digital-qPCR-Based Quantification of Circulating Cell-Free RNA for Noninvasive Early Detection of Cancer}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {2}, issn = {2072-6694}, doi = {10.3390/cancers12020353}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200553}, year = {2020}, abstract = {Early detection of cancer holds high promise for reducing cancer-related mortality. Detection of circulating tumor-specific nucleic acids holds promise, but sensitivity and specificity issues remain with current technology. We studied cell-free RNA (cfRNA) in patients with non-small cell lung cancer (NSCLC; n = 56 stage IV, n = 39 stages I-III), pancreatic cancer (PDAC, n = 20 stage III), malignant melanoma (MM, n = 12 stage III-IV), urothelial bladder cancer (UBC, n = 22 stage II and IV), and 65 healthy controls by means of next generation sequencing (NGS) and real-time droplet digital PCR (RT-ddPCR). We identified 192 overlapping upregulated transcripts in NSCLC and PDAC by NGS, more than 90\% of which were noncoding. Previously reported transcripts (e.g., HOTAIRM1) were identified. Plasma cfRNA transcript levels of POU6F2-AS2 discriminated NSCLC from healthy donors (AUC = 0.82 and 0.76 for stages IV and I-III, respectively) and significantly associated (p = 0.017) with the established tumor marker Cyfra 21-1. cfRNA yield and POU6F2-AS transcript abundance discriminated PDAC patients from healthy donors (AUC = 1.0). POU6F2-AS2 transcript was significantly higher in MM (p = 0.044). In summary, our findings support further validation of cfRNA detection by RT-ddPCR as a biomarker for early detection of solid cancers.}, language = {en} }