@article{FaganDollarLuetal.2014, author = {Fagan, Jeremy K. and Dollar, Gretchen and Lu, Qiuheng and Barnett, Austen and Jorge, Joaquin Pechuan and Schlosser, Andreas and Pfleger, Cathie and Adler, Paul and Jenny, Andreas}, title = {Combover/CG10732, a Novel PCP Effector for Drosophila Wing Hair Formation}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {9}, issn = {1932-6203}, doi = {10.1371/journal.pone.0107311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115394}, pages = {e107311}, year = {2014}, abstract = {The polarization of cells is essential for the proper functioning of most organs. Planar Cell Polarity (PCP), the polarization within the plane of an epithelium, is perpendicular to apical-basal polarity and established by the non-canonical Wnt/Fz-PCP signaling pathway. Within each tissue, downstream PCP effectors link the signal to tissue specific readouts such as stereocilia orientation in the inner ear and hair follicle orientation in vertebrates or the polarization of ommatidia and wing hairs in Drosophila melanogaster. Specific PCP effectors in the wing such as Multiple wing hairs (Mwh) and Rho Kinase (Rok) are required to position the hair at the correct position and to prevent ectopic actin hairs. In a genome-wide screen in vitro, we identified Combover (Cmb)/CG10732 as a novel Rho kinase substrate. Overexpression of Cmb causes the formation of a multiple hair cell phenotype (MHC), similar to loss of rok and mwh. This MHC phenotype is dominantly enhanced by removal of rok or of other members of the PCP effector gene family. Furthermore, we show that Cmb physically interacts with Mwh, and cmb null mutants suppress the MHC phenotype of mwh alleles. Our data indicate that Cmb is a novel PCP effector that promotes to wing hair formation, a function that is antagonized by Mwh.}, language = {en} }