@article{KarabegGrauthoffKollertetal.2013, author = {Karabeg, Margherita M. and Grauthoff, Sandra and Kollert, Sina Y. and Weidner, Magdalena and Heiming, Rebecca S. and Jansen, Friederike and Popp, Sandy and Kaiser, Sylvia and Lesch, Klaus-Peter and Sachser, Norbert and Schmitt, Angelika G. and Lewejohann, Lars}, title = {5-HTT Deficiency Affects Neuroplasticity and Increases Stress Sensitivity Resulting in Altered Spatial Learning Performance in the Morris Water Maze but Not in the Barnes Maze}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0078238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129978}, pages = {e78238}, year = {2013}, abstract = {The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in na{\"i}ve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised alertness, possibly impeding optimal learning performance in the more stressful WM.}, language = {en} } @article{SchaefferKuehnSchmittetal.2013, author = {Schaeffer, Evelin L. and K{\"u}hn, Franziska and Schmitt, Angelika and Gattaz, Wagner F. and Gruber, Oliver and Schneider-Axmann, Thomas and Falkai, Peter and Schmitt, Andrea}, title = {Increased cell proliferation in the rat anterior cingulate cortex following neonatal hypoxia: relevance to schizophrenia}, series = {Journal of Neural Transmission}, volume = {120}, journal = {Journal of Neural Transmission}, number = {1}, doi = {10.1007/s00702-012-0859-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125890}, pages = {187-195}, year = {2013}, abstract = {As a consequence of obstetric complications, neonatal hypoxia has been discussed as an environmental factor in the pathophysiology of schizophrenia. However, the biological consequences of hypoxia are unclear. The neurodevelopmental hypothesis of schizophrenia suggests that the onset of abnormal brain development and neuropathology occurs perinatally, whereas symptoms of the disease appear in early adulthood. In our animal model of chronic neonatal hypoxia, we have detected behavioral alterations resembling those known from schizophrenia. Disturbances in cell proliferation possibly contribute to the pathophysiology of this disease. In the present study, we used postnatal rats to investigate cell proliferation in several brain areas following neonatal hypoxia. Rats were repeatedly exposed to hypoxia (89 \% N2, 11 \% O2) from postnatal day (PD) 4-8. We then evaluated cell proliferation on PD 13 and 39, respectively. These investigations were performed in the anterior cingulate cortex (ACC), caudate-putamen (CPU), dentate gyrus, and subventricular zone. Rats exposed to hypoxia exhibited increased cell proliferation in the ACC at PD 13, normalizing at PD 39. In other brain regions, no alterations have been detected. Additionally, hypoxia-treated rats showed decreased CPU volume at PD 13. The results of the present study on the one hand support the assumption of chronic hypoxia influencing transient cell proliferation in the ACC, and on the other hand reveal normalization during ageing.}, language = {en} }