@article{LeonhardtSchmittBluethgen2011, author = {Leonhardt, Sara D. and Schmitt, Thomas and Bl{\"u}thgen, Nico}, title = {Tree Resin Composition, Collection Behavior and Selective Filters Shape Chemical Profiles of Tropical Bees (Apidae: Meliponini)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69035}, year = {2011}, abstract = {The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific ''filtering'' of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces fromdifferent species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans.}, subject = {Stachellose Biene}, language = {en} } @article{DrescherBluethgenSchmittetal.2010, author = {Drescher, Jochen and Bluethgen, Nico and Schmitt, Thomas and Buehler, Jana and Feldhaar, Heike}, title = {Societies Drifting Apart? Behavioural, Genetic and Chemical Differentiation between Supercolonies in the Yellow Crazy Ant Anoplolepis gracilipes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68573}, year = {2010}, abstract = {Background: In populations of most social insects, gene flow is maintained through mating between reproductive individuals from different colonies in periodic nuptial flights followed by dispersal of the fertilized foundresses. Some ant species, however, form large polygynous supercolonies, in which mating takes place within the maternal nest (intranidal mating) and fertilized queens disperse within or along the boundary of the supercolony, leading to supercolony growth (colony budding). As a consequence, gene flow is largely confined within supercolonies. Over time, such supercolonies may diverge genetically and, thus, also in recognition cues (cuticular hydrocarbons, CHC's) by a combination of genetic drift and accumulation of colony-specific, neutral mutations. Methodology/Principal Findings: We tested this hypothesis for six supercolonies of the invasive ant Anoplolepis gracilipes in north-east Borneo. Within supercolonies, workers from different nests tolerated each other, were closely related and showed highly similar CHC profiles. Between supercolonies, aggression ranged from tolerance to mortal encounters and was negatively correlated with relatedness and CHC profile similarity. Supercolonies were genetically and chemically distinct, with mutually aggressive supercolony pairs sharing only 33.1\%617.5\% (mean 6 SD) of their alleles across six microsatellite loci and 73.8\%611.6\% of the compounds in their CHC profile. Moreover, the proportion of alleles that differed between supercolony pairs was positively correlated to the proportion of qualitatively different CHC compounds. These qualitatively differing CHC compounds were found across various substance classes including alkanes, alkenes and mono-, di- and trimethyl-branched alkanes. Conclusions: We conclude that positive feedback between genetic, chemical and behavioural traits may further enhance supercolony differentiation through genetic drift and neutral evolution, and may drive colonies towards different evolutionary pathways, possibly including speciation.}, subject = {Ameisen}, language = {en} } @article{MenzelBluethgenTolaschetal.2013, author = {Menzel, Florian and Bl{\"u}thgen, Nico and Tolasch, Till and Conrad, J{\"u}rgen and Beifuss, Uwe and Beuerle, Till and Schmitt, Thomas}, title = {Crematoenones - a novel substance class exhibited by ants functions as appeasement signal}, series = {Frontiers in Zoology}, volume = {10}, journal = {Frontiers in Zoology}, number = {32}, issn = {1742-9994}, doi = {10.1186/1742-9994-10-32}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122595}, year = {2013}, abstract = {Background: Parasitic, commensalistic, and mutualistic guests in social insect colonies often circumvent their hosts' nestmate recognition system to be accepted. These tolerance strategies include chemical mimicry and chemical insignificance. While tolerance strategies have been studied intensively in social parasites, little is known about these mechanisms in non-parasitic interactions. Here, we describe a strategy used in a parabiotic association, i.e. two mutualistic ant species that regularly share a common nest although they have overlapping food niches. One of them, Crematogaster modiglianii, produces an array of cuticular compounds which represent a substance class undescribed in nature so far. They occur in high abundances, which suggests an important function in the ant's association with its partner Camponotus rufifemur. Results: We elucidated the structure of one of the main compounds from cuticular extracts using gas chromatography, mass spectrometry, chemical derivatizations and nuclear magnetic resonance spectroscopy (NMR). The compound consists of two fused six-membered rings with two alkyl groups, one of which carries a keto functionality. To our knowledge, this is the first report on the identification of this substance class in nature. We suggest naming the compound crematoenone. In behavioural assays, crematoenones reduced interspecific aggression. Camponotus showed less aggression to allospecific cuticular hydrocarbons when combined with crematoenones. Thus, they function as appeasement substances. However, although the crematoenone composition was highly colony-specific, interspecific recognition was mediated by cuticular hydrocarbons, and not by crematoenones. Conclusions: Crematenones enable Crematogaster to evade Camponotus aggression, and thus reduce potential costs from competition with Camponotus. Hence, they seem to be a key factor in the parabiosis, and help Crematogaster to gain a net benefit from the association and thus maintain a mutualistic association over evolutionary time. To our knowledge, putative appeasement substances have been reported only once so far, and never between non-parasitic species. Since most organisms associated with social insects need to overcome their nestmate recognition system, we hypothesize that appeasement substances might play an important role in the evolution and maintenance of other mutualistic associations as well, by allowing organisms to reduce costs from antagonistic behaviour of other species.}, language = {en} } @article{StrubeBlossBrownSpaetheetal.2015, author = {Strube-Bloss, Martin F. and Brown, Austin and Spaethe, Johannes and Schmitt, Thomas and R{\"o}ssler, Wolfgang}, title = {Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0137413}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125875}, pages = {e0137413}, year = {2015}, abstract = {To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a 'dance' behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL) neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol). The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors.}, language = {en} } @phdthesis{Schmitt2004, author = {Schmitt, Thomas}, title = {Communication in the hymenoptera : chemistry, ecology and evolution}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11267}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Insects exhibit complex systems of communication with chemical signalling being the most important mode. Although there are many studies on chemical communication in insects, the evolution of chemical signals is not well understood. Due to the conflict of interests between individuals, different selective pressures might act on sender and receiver. In this thesis I investigate different types of communication where either the sender, the receiver or both parties yield benefits. These studies were conducted with one digger wasp species, honeybees, one chrysidid wasp, and three ant species. Senders might benefit by exploiting existing preferences of receivers. Such sensory exploitation might influence the evolution of male signals that are designed to attract females. The sex pheromone of male European beewolves Philanthus triangulum (Hymenoptera, Crabronidae) might have evolved according to the sensory exploitation hypothesis. A three-step scenario is supported by our studies. First, a major component of the honeybee alarm pheromone, (Z)-11-eicosen-1-ol, is also found on the cuticles and in the air surrounding foraging honeybees. Second, it could be shown, that (Z)-11- eicosen-1-ol plays a crucial role as kairomone for prey identification of honeybees by beewolf females. Third, a reanalysis of the beewolf male sex pheromone shows a remarkable similarity of compounds between the pheromone and the honeybee cuticle, besides the co-occurrence of (Z)-11-eisosen-ol. The majority of the cuticular hydrocarbons of honeybees occur also in the headspace of foraging workers. These results strongly support the hypothesis that beewolf males evolved a pheromone that exploits the females' pre-existing sensory sensitivity. In addition, the male sex pheromone shows a significantly higher similarity among brothers than among non-related individuals, which might enable beewolf females to discriminate against brothers and avoid detrimental effects of breeding. Together with the studies on the possible sensory exploitation this result shows that both, male and female beewolves probably gain more benefits than costs from the pheromone communication and, thus, the communication system as a whole can be regarded as cooperative. To maintain the reproductive division of labour in eusocial colonies, queens have to signal their presence and fecundity. In the ant Camponotus floridanus (Hymenoptera, Formicidae) queens mark their own eggs with a distinctive pattern of cuticular hydrocarbons. Two different hypotheses have been developed. One suggests a form of worker manipulation by the queen. The alternative hypothesis assumes a cooperative signal that provides information on the condition of the queen. The results of our investigation clearly favour the latter hypothesis. Chemical mimicry is a form of non-cooperative communication that benefits predominantly the sender. We provided conclusive evidence that the cockoo wasp, Hedychrum rutilans (Hymenoptera, Chrysididae), the primary brood parasitoid of Philanthus triangulum, evades recognition by beewolf females most probably by chemical mimicry of the odour of its host. Furthermore, the adaptation of the chemical signature in the social ant parasite Protomognathus americanus (Hymenoptera, Formicidae) to its Leptothorax (Hymenoptera, Formicidae) hosts was investigated. Although this parasite is principally adapted to its hosts' cuticular hydrocarbon profile, there are still pronounced differences between the profiles of parasites and hosts. This might be explained by the trade-off, which the parasites faces when confronted locally with two host species with different cuticular hydrocarbon profiles. Non-cooperative communication in the sense that only receivers benefit was discovered in the exploitation of honeybees volatile cuticular hydrocarbons by beewolf females. By using emitted (Z)-11-eicosen-1-ol as a kairomone, the receiver, the beewolf female, yields the benefits and the sender, the honeybee prey, bears all the costs. The results of these studies contribute to the understanding of the evolution of cooperative and non-cooperative communication with chemical signals taking into account differential benefits for sender and/or receiver.}, subject = {Hautfl{\"u}gler}, language = {en} } @article{ChristopherDUgelvigWiesenhoferetal.2018, author = {Christopher D., Pull and Ugelvig, Line V. and Wiesenhofer, Florian and Anna V., Grasse and Tragust, Simon and Schmitt, Thomas and Brown, Mark JF and Cremer, Sylvia}, title = {Destructive disinfection of infected brood prevents systemic disease spread in ant colonies}, series = {eLIFE}, volume = {7}, journal = {eLIFE}, doi = {10.7554/eLife.32073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223728}, pages = {e 32073, 1-29}, year = {2018}, abstract = {In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogens non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation.}, language = {en} } @article{MaihoffBohlkeBrockmannetal.2022, author = {Maihoff, Fabienne and Bohlke, Kyte and Brockmann, Axel and Schmitt, Thomas}, title = {Increased complexity of worker CHC profiles in Apis dorsata correlates with nesting ecology}, series = {PLoS ONE}, volume = {17}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0271745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301353}, year = {2022}, abstract = {Cuticular hydrocarbons (CHC) are known to serve as discrimination cues and will trigger defence behaviour in a plethora of eusocial insects. However, little is known how about nestmate recognition ability selects for CHC diversification. In this study we investigate differences in CHC composition of four major honey bee species with respect to the differences in their nesting behavior. In contrast to A. mellifera, A. cerana and A. florea, the giant honey bee A. dorsata prefers to build their nests in aggregations with very small spatial distances between nests, which increases the probability of intrusions. Thus, A. dorsata exhibits a particularly challenging nesting behavior which we hypothesize should be accompanied with an improved nestmate recognition system. Comparative analyses of the worker CHC profiles indicate that A. dorsata workers exhibit a unique and more complex CHC profile than the other three honey bee species. This increased complexity is likely based on a developmental process that retains the capability to synthesize methyl-branched hydrocarbons as adults. Furthermore, two sets of behavioral experiments provide evidence that A. dorsata shows an improved nestmate discrimination ability compared to the phylogenetically ancestral A. florea, which is also open-nesting but does not form nest aggregations. The results of our study suggest that ecological traits like nesting in aggregation might be able to drive CHC profile diversification even in closely related insect species.}, language = {en} } @techreport{MuellerSchererLorenzenAmmeretal.2022, author = {M{\"u}ller, J{\"o}rg and Scherer-Lorenzen, Michael and Ammer, Christian and Eisenhauer, Nico and Seidel, Dominik and Schuldt, Bernhard and Biedermann, Peter and Schmitt, Thomas and K{\"u}nzer, Claudia and Wegmann, Martin and Cesarz, Simone and Peters, Marcell and Feldhaar, Heike and Steffan-Dewenter, Ingolf and Claßen, Alice and B{\"a}ssler, Claus and von Oheimb, Goddert and Fichtner, Andreas and Thorn, Simon and Weisser, Wolfgang}, title = {BETA-FOR: Erh{\"o}hung der strukturellen Diversit{\"a}t zwischen Waldbest{\"a}nden zur Erh{\"o}hung der Multidiversit{\"a}t und Multifunktionalit{\"a}t in Produktionsw{\"a}ldern. Antragstext f{\"u}r die DFG Forschungsgruppe FOR 5375}, doi = {10.25972/OPUS-29084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290849}, pages = {210}, year = {2022}, abstract = {Der in j{\"u}ngster Zeit beobachtete kontinuierliche Verlust der β-Diversit{\"a}t in {\"O}kosystemen deutet auf homogene Gemeinschaften auf Landschaftsebene hin, was haupts{\"a}chlich auf die steigende Landnutzungsintensit{\"a}t zur{\"u}ckgef{\"u}hrt wird. Biologische Vielfalt ist mit zahlreichen Funktionen und der Stabilit{\"a}t von {\"O}kosystemen verkn{\"u}pft. Es ist daher zu erwarten, dass eine abnehmende β-Diversit{\"a}t auch die Multifunktionalit{\"a}t verringert. Wir kombinieren hier Fachwissen aus der Forstwissenschaft, der {\"O}kologie, der Fernerkundung, der chemischen {\"O}kologie und der Statistik in einem gemeinschaftlichen und experimentellen β-Diversit{\"a}tsdesign, um einerseits die Auswirkungen der Homogenisierung zu bewerten und andererseits Konzepte zu entwickeln, um negative Auswirkungen durch Homogenisierung in W{\"a}ldern r{\"u}ckg{\"a}ngig zu machen. Konkret werden wir uns mit der Frage besch{\"a}ftigen, ob die Verbesserung der strukturellen β-Komplexit{\"a}t (ESBC) in W{\"a}ldern durch Waldbau oder nat{\"u}rliche St{\"o}rungen die Biodiversit{\"a}t und Multifunktionalit{\"a}t in ehemals homogenen Produktionsw{\"a}ldern erh{\"o}hen kann. Unser Ansatz wird m{\"o}gliche Mechanismen hinter den beobachteten Homogenisierungs-Diversit{\"a}ts-Beziehungen identifizieren und zeigen, wie sich diese auf die Multifunktionalit{\"a}t auswirken. An elf Standorten in ganz Deutschland haben wir dazu zwei Waldbest{\"a}nde als zwei kleine "Waldlandschaften" ausgew{\"a}hlt. In einem dieser beiden Best{\"a}nde haben wir ESBC (Enhancement of Structural Beta Complexity)-Behandlungen durchgef{\"u}hrt. Im zweiten, dem Kontrollbestand, werden wir die gleich Anzahl 50x50m Parzellen ohne ESBC einrichten. Auf allen Parzellen werden wir 18 taxonomische Artengruppen aller trophischer Ebenen und 21 {\"O}kosystemfunktionen, einschließlich der wichtigsten Funktionen in W{\"a}ldern der gem{\"a}ßigten Zonen, messen. Der statistische Rahmen wird eine umfassende Analyse der Biodiversit{\"a}t erm{\"o}glichen, indem verschiedenen Aspekte (taxonomische, funktionelle und phylogenetische Vielfalt) auf verschiedenen Skalenebenen (α-, β-, γ-Diversit{\"a}t) quantifiziert werden. Um die Gesamtdiversit{\"a}t zu kombinieren, werden wir das Konzept der Multidiversit{\"a}t auf die 18 Taxa anwenden. Wir werden neue Ans{\"a}tze zur Quantifizierung und Aufteilung der Multifunktionalit{\"a}t auf α- und β-Skalen verwenden und entwickeln. Durch die experimentelle Beschreibung des Zusammenhangs zwischen β-Diversit{\"a}t und Multifunktionalit{\"a}t in einer Reallandschaft wird unsere Forschung einen neuen Weg einschlagen. Dar{\"u}ber hinaus werden wir dazu beitragen, verbesserte Leitlinien f{\"u}r waldbauliche Konzepte und f{\"u}r das Management nat{\"u}rlicher St{\"o}rungen zu entwickeln, um Homogenisierungseffekte der Vergangenheit umzukehren.}, subject = {Wald{\"o}kosystem}, language = {en} } @article{DiaoMoussetHorsburghetal.2016, author = {Diao, Wenwen and Mousset, Mathilde and Horsburgh, Gavin J. and Vermeulen, Cornelis J. and Johannes, Frank and van de Zande, Louis and Ritchie, Michael G. and Schmitt, Thomas and Beukeboom, Leo W.}, title = {Quantitative Trait Locus Analysis of Mating Behavior and Male Sex Pheromones in Nasonia Wasps}, series = {G3: Genes Genomes Genetics}, volume = {6}, journal = {G3: Genes Genomes Genetics}, number = {6}, doi = {10.1534/g3.116.029074}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165412}, pages = {1549-1562}, year = {2016}, abstract = {A major focus in speciation genetics is to identify the chromosomal regions and genes that reduce hybridization and gene flow. We investigated the genetic architecture of mating behavior in the parasitoid wasp species pair Nasonia giraulti and Nasonia oneida that exhibit strong prezygotic isolation. Behavioral analysis showed that N. oneida females had consistently higher latency times, and broke off the mating sequence more often in the mounting stage when confronted with N. giraulti males compared with males of their own species. N. oneida males produce a lower quantity of the long-range male sex pheromone (4R,5S)-5-hydroxy-4-decanolide (RS-HDL). Crosses between the two species yielded hybrid males with various pheromone quantities, and these males were used in mating trials with females of either species to measure female mate discrimination rates. A quantitative trait locus (QTL) analysis involving 475 recombinant hybrid males (F2), 2148 reciprocally backcrossed females (F3), and a linkage map of 52 equally spaced neutral single nucleotide polymorphism (SNP) markers plus SNPs in 40 candidate mating behavior genes revealed four QTL for male pheromone amount, depending on partner species. Our results demonstrate that the RS-HDL pheromone plays a role in the mating system of N. giraulti and N. oneida, but also that additional communication cues are involved in mate choice. No QTL were found for female mate discrimination, which points at a polygenic architecture of female choice with strong environmental influences.}, language = {en} } @article{BuellesbachDiaoSchmittetal.2022, author = {Buellesbach, Jan and Diao, Wenwen and Schmitt, Thomas and Beukeboom, Leo W.}, title = {Micro-climate correlations and conserved sexual dimorphism of cuticular hydrocarbons in European populations of the jewel wasp Nasonia vitripennis}, series = {Ecological Entomology}, volume = {47}, journal = {Ecological Entomology}, number = {1}, doi = {10.1111/een.13089}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262770}, pages = {38 -- 51}, year = {2022}, abstract = {1. Protection against desiccation and chemical communication are two fundamental functions of cuticular hydrocarbons (CHCs) in insects. In the parasitoid jewel wasp Nasonia vitripennis (Walker), characterised by a cosmopolitan distribution through largely different environments, CHCs function as universally recognised female sex pheromones. However, CHC uniformity as basis for sexual recognition may conflict with the desiccation protection function, expected to display considerable flexibility through adaptation to different environmental conditions. 2. We compared male and female CHC profiles of N. vitripennis across a wide latitudinal gradient in Europe and correlated their CHC variation with climatic factors associated with desiccation. Additionally, we tested male mate discrimination behaviour between populations to detect potential variations in female sexual attractiveness. 3. Results did not conform to the general expectation that longer, straight-chain CHCs occur in higher proportions in warmer and drier climates. Instead, unexpected environmental correlations of intermediate chain-length CHCs (C31) were found exclusively in females, potentially reflecting the different life histories of the sexes in N. vitripennis. 4. Furthermore, we found no indication of population-specific male mate preference, confirming the stability of female sexual attractiveness, likely conveyed through their CHC profiles. C31 mono- and C33 di-methyl-branched alkanes were consistently and most strongly associated with sexual dimorphism, suggesting their potential role in encoding the female-specific sexual signalling function. 5. Our study sheds light on how both adaptive flexibility and conserved sexual attractiveness can potentially be integrated and encoded in CHC profiles of N. vitripennis females across a wide distribution range in Europe.}, language = {en} }