@phdthesis{Schmitz2016, author = {Schmitz, Tobias}, title = {Functional coatings by physical vapor deposition (PVD) for biomedical applications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144825}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Metals are the most used materials for implant devices, especially in orthopedics, but despite their long history of application issues such as material failure through wear and corrosion remain unsolved leading to a certain number of revision surgeries. Apart from the problems associated with insufficient material properties, another serious issue is an implant associated infection due to the formation of a biofilm on the surface of the material after implantation. Thus, improvements in implant technology are demanded, especially since there is a projected rise of implants needed in the future. Surface modification methods such as physical vapour deposition (PVD), oxygen diffusion hardening and electrochemical anodization have shown to be efficient methods to improve the surfaces of metallic bulk materials regarding biomedical issues. This thesis was focused on the development of functional PVD coatings that are suitable for further treatment with surface modification techniques originally developed for bulk metals. The aim was to precisely adjust the surface properties of the implant according to the targeted application to prevent possible failure mechanisms such as coating delamination, wear or the occurrence of post-operative infections. Initially,  tantalum layers with approx 5 µm thickness were deposited at elevated substrate temperatures on cp Ti by RF magnetron sputtering. Due to the high affinity of tantalum to oxygen, these coatings are known to provide a self healing capacity since the rapid oxide formation is known to close surface cracks. Here, the work aimed to reduce the abrupt change of mechanical properties between the hard and brittle coating and the ductile substrate by creating an oxygen diffusion zone. It was found that the hardness and adhesion could be significantly increased when the coatings were treated afterwards by oxygen diffusion hardening in a two step process. Firstly, the surface was oxidized at a pressure of 6.7•10-3 mbar at 350 450 °C, followed by 1-2 h annealing in oxygen-free atmosphere at the same temperature leading to a diffusion of oxygen atoms into deeper parts of the substrate as proved by X-ray diffraction (XRD) analysis. The hereby caused mechanical stress in the crystal lattice led to an increase in Vickers hardness of the Ta layers from 570 HV to over 900 HV. Investigations into the adhesion of oxygen diffusion treated samples by Rockwell measurements demonstrated an increase of critical force for coating delamination from 12 N for untreated samples up to 25 N for diffusion treated samples. In a second approach, the development of modular targets aimed to produce functional coatings by metallic doping of titanium with biologically active agents. This was demonstrated by the fabrication of antimicrobial Ti(Ag) coatings using a single magnetron sputtering source equipped with a titanium target containing implemented silver modules under variation of bias voltage and substrate temperature. The deposition of both Ti and Ag was confirmed by X-ray diffraction and a clear correlation between the applied sputtering parameters and the silver content of the coatings was demonstrated by ICP-MS and EDX. Surface-sensitive XPS measurements revealed that higher substrate temperatures led to an accumulation of Ag in the near-surface region, while the application of a bias voltage had the opposite effect. SEM and AFM microscopy revealed that substrate heating during film deposition supported the formation of even and dense surface layers with small roughness values, which could even be enforced by applying a substrate bias voltage. Additional elution measurements using ICP-MS showed that the release kinetics depended on the amount of silver located at the film surface and hence could be tailored by variation of the sputter parameters. In a final step, the applied Ti and Ti(Ag) coatings deposited on cp Ti, stainless steel (316L) and glass substrates were subsequently nanostructured using a self-ordering process induced by electrochemical anodization in aqueous fluoride containing electrolytes. SEM analysis showed that nanotube arrays could be grown from the Ti and Ti(Ag) coatings deposited at elevated temperatures on any substrate, whereby no influence of the substrate on nanotube morphology could be observed. EDX measurements indicated that the anodization process led to the selective etching of Ti from Ti(Ag) coating. Further experiments on coatings deposited on glass surfaces revealed that moderate substrate temperatures during deposition resulting in smooth Ti layers as determined by AFM measurements, are favorable for the generation of highly ordered nanotube arrays. Such arrays exhibited superhydrophilic behavior as proved by contact angle measurements. XRD analysis revealed that the nanostructured coatings were amorphous after anodization but could be crystallized to anatase structure by thermal treatment at temperatures of 450°C.}, subject = {PVD-Verfahren}, language = {en} } @article{SchwedhelmZdziebloAppeltMenzeletal.2019, author = {Schwedhelm, Ivo and Zdzieblo, Daniela and Appelt-Menzel, Antje and Berger, Constantin and Schmitz, Tobias and Schuldt, Bernhard and Franke, Andre and M{\"u}ller, Franz-Josef and Pless, Ole and Schwarz, Thomas and Wiedemann, Philipp and Walles, Heike and Hansmann, Jan}, title = {Automated real-time monitoring of human pluripotent stem cell aggregation in stirred tank reactors}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-48814-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202649}, pages = {12297}, year = {2019}, abstract = {The culture of human induced pluripotent stem cells (hiPSCs) at large scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Innovative monitoring options and emerging automated process control strategies allow for the necessary highly defined culture conditions. Next to standard process characteristics such as oxygen consumption, pH, and metabolite turnover, a reproducible and steady formation of hiPSC aggregates is vital for process scalability. In this regard, we developed a hiPSC-specific suspension culture unit consisting of a fully monitored CSTR system integrated into a custom-designed and fully automated incubator. As a step towards cost-effective hiPSC suspension culture and to pave the way for flexibility at a large scale, we constructed and utilized tailored miniature CSTRs that are largely made from three-dimensional (3D) printed polylactic acid (PLA) filament, which is a low-cost material used in fused deposition modelling. Further, the monitoring tool for hiPSC suspension cultures utilizes in situ microscopic imaging to visualize hiPSC aggregation in real-time to a statistically significant degree while omitting the need for time-intensive sampling. Suitability of our culture unit, especially concerning the developed hiPSC-specific CSTR system, was proven by demonstrating pluripotency of CSTR-cultured hiPSCs at RNA (including PluriTest) and protein level.}, language = {en} } @article{JannaschWeigelEngelhardtetal.2017, author = {Jannasch, Maren and Weigel, Tobias and Engelhardt, Lisa and Wiezoreck, Judith and Gaetzner, Sabine and Walles, Heike and Schmitz, Tobias and Hansmann, Jan}, title = {\({In}\) \({vitro}\) chemotaxis and tissue remodeling assays quantitatively characterize foreign body reaction}, series = {ALTEX - Alternatives to Animal Experimentation}, volume = {34}, journal = {ALTEX - Alternatives to Animal Experimentation}, number = {2}, doi = {10.14573/altex.1610071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172080}, pages = {253-266}, year = {2017}, abstract = {Surgical implantation of a biomaterial triggers foreign-body-induced fibrous encapsulation. Two major mechanisms of this complex physiological process are (I) chemotaxis of fibroblasts from surrounding tissue to the implant region, followed by (II) tissue remodeling. As an alternative to animal studies, we here propose a process-aligned \({in}\) \({vitro}\) test platform to investigate the material dependency of fibroblast chemotaxis and tissue remodeling mediated by material-resident macrophages. Embedded in a biomimetic three-dimensional collagen hydrogel, chemotaxis of fibroblasts in the direction of macrophage-material-conditioned cell culture supernatant was analyzed by live cell imaging. A combination of statistical analysis with a complementary parameterized random walk model allowed quantitative and qualitative characterization of the cellular walk process. We thereby identified an increasing macrophage-mediated chemotactic potential ranking of biomaterials from glass over polytetrafluorethylene to titanium. To address long-term effects of biomaterial-resident macrophages on fibroblasts in a three-dimensional microenvironment, we further studied tissue remodeling by applying macrophage-material-conditioned medium on fibrous \({in}\) \({vitro}\) tissue models. A high correlation of the \({in}\) \({vitro}\) tissue model to state of the art \({in}\) \({vivo}\) study data was found. Titanium exhibited a significantly lower tissue remodeling capacity compared to polytetrafluorethylene. With this approach, we identified a material dependency of both chemotaxis and tissue remodeling processes, strengthening knowledge on their specific contribution to the foreign body reaction.}, language = {en} } @article{WeigelSchmitzPfisteretal.2018, author = {Weigel, Tobias and Schmitz, Tobias and Pfister, Tobias and Gaetzner, Sabine and Jannasch, Maren and Al-Hijailan, Reem and Sch{\"u}rlein, Sebastian and Suliman, Salwa and Mustafa, Kamal and Hansmann, Jan}, title = {A three-dimensional hybrid pacemaker electrode seamlessly integrates into engineered, functional human cardiac tissue in vitro}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {14545}, doi = {10.1038/s41598-018-32790-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177368}, year = {2018}, abstract = {Pacemaker systems are an essential tool for the treatment of cardiovascular diseases. However, the immune system's natural response to a foreign body results in the encapsulation of a pacemaker electrode and an impaired energy efficiency by increasing the excitation threshold. The integration of the electrode into the tissue is affected by implant properties such as size, mechanical flexibility, shape, and dimensionality. Three-dimensional, tissue-like electrode scaffolds render an alternative to currently used planar metal electrodes. Based on a modified electrospinning process and a high temperature treatment, a conductive, porous fiber scaffold was fabricated. The electrical and immunological properties of this 3D electrode were compared to 2D TiN electrodes. An increased surface of the fiber electrode compared to the planar 2D electrode, showed an enhanced electrical performance. Moreover, the migration of cells into the 3D construct was observed and a lower inflammatory response was induced. After early and late in vivo host response evaluation subcutaneously, the 3D fiber scaffold showed no adverse foreign body response. By embedding the 3D fiber scaffold in human cardiomyocytes, a tissue-electrode hybrid was generated that facilitates a high regenerative capacity and a low risk of fibrosis. This hybrid was implanted onto a spontaneously beating, tissue-engineered human cardiac patch to investigate if a seamless electronic-tissue interface is generated. The fusion of this hybrid electrode with a cardiac patch resulted in a mechanical stable and electrical excitable unit. Thereby, the feasibility of a seamless tissue-electrode interface was proven.}, language = {en} } @article{KannapinSchmitzHansmannetal.2021, author = {Kannapin, Felix and Schmitz, Tobias and Hansmann, Jan and Schlegel, Nicolas and Meir, Michael}, title = {Measurements of transepithelial electrical resistance (TEER) are affected by junctional length in immature epithelial monolayers}, series = {Histochemistry and Cell Biology}, volume = {156}, journal = {Histochemistry and Cell Biology}, number = {6}, issn = {1432-119X}, doi = {10.1007/s00418-021-02026-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267465}, pages = {609-616}, year = {2021}, abstract = {The measurement of transepithelial electrical resistance (TEER) is a common technique to determine the barrier integrity of epithelial cell monolayers. However, it is remarkable that absolute TEER values of similar cell types cultured under comparable conditions show an immense heterogeneity. Based on previous observations, we hypothesized that the heterogeneity of absolute TEER measurements can not only be explained by maturation of junctional proteins but rather by dynamics in the absolute length of cell junctions within monolayers. Therefore, we analyzed TEER in epithelial cell monolayers of Caco2 cells during their differentiation, with special emphasis on both changes in the junctional complex and overall cell morphology within monolayers. We found that in epithelial Caco2 monolayers TEER increased until confluency, then decreased for some time, which was then followed by an additional increase during junctional differentiation. In contrast, permeability of macromolecules measured at different time points as 4 kDA fluorescein isothiocyanate (FITC)-dextran flux across monolayers steadily decreased during this time. Detailed analysis suggested that this observation could be explained by alterations of junctional length along the cell borders within monolayers during differentiation. In conclusion, these observations confirmed that changes in cell numbers and consecutive increase of junctional length have a critical impact on TEER values, especially at stages of early confluency when junctions are immature.}, language = {en} } @article{SchmitzJannaschWeigeletal.2020, author = {Schmitz, Tobias and Jannasch, Maren and Weigel, Tobias and Moseke, Claus and Gbureck, Uwe and Groll, J{\"u}rgen and Walles, Heike and Hansmann, Jan}, title = {Nanotopographical Coatings Induce an Early Phenotype-Specific Response of Primary Material-Resident M1 and M2 Macrophages}, series = {Materials}, volume = {13}, journal = {Materials}, number = {5}, issn = {1996-1944}, doi = {10.3390/ma13051142}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203378}, year = {2020}, abstract = {Implants elicit an immunological response after implantation that results in the worst case in a complete implant rejection. This biomaterial-induced inflammation is modulated by macrophages and can be influenced by nanotopographical surface structures such as titania nanotubes or fractal titanium nitride (TiN) surfaces. However, their specific impact on a distinct macrophage phenotype has not been identified. By using two different levels of nanostructures and smooth samples as controls, the influence of tubular TiO2 and fractal TiN nanostructures on primary human macrophages with M1 or M2-phenotype was investigated. Therefore, nanotopographical coatings were either, directly generated by physical vapor deposition (PVD) or by electrochemical anodization of titanium PVD coatings. The cellular response of macrophages was quantitatively assessed to demonstrate a difference in biocompatibility of nanotubes in respect to human M1 and M2-macrophages. Depending on the tube diameter of the nanotubular surfaces, low cell numbers and impaired cellular activity, was detected for M2-macrophages, whereas the impact of nanotubes on M1-polarized macrophages was negligible. Importantly, we could confirm this phenotypic response on the fractal TiN surfaces. The results indicate that the investigated topographies specifically impact the macrophage M2-subtype that modulates the formation of the fibrotic capsule and the long-term response to an implant.}, language = {en} } @article{JannaschGaetznerWeigeletal.2017, author = {Jannasch, Maren and Gaetzner, Sabine and Weigel, Tobias and Walles, Heike and Schmitz, Tobias and Hansmann, Jan}, title = {A comparative multi-parametric in vitro model identifies the power of test conditions to predict the fibrotic tendency of a biomaterial}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {1689}, doi = {10.1038/s41598-017-01584-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170908}, year = {2017}, abstract = {Despite growing effort to advance materials towards a low fibrotic progression, all implants elicit adverse tissue responses. Pre-clinical biomaterial assessment relies on animals testing, which can be complemented by in vitro tests to address the Russell and Burch's 3R aspect of reducing animal burden. However, a poor correlation between in vitro and in vivo biomaterial assessments confirms a need for suitable in vitro biomaterial tests. The aim of the study was to identify a test setting, which is predictive and might be time- and cost-efficient. We demonstrated how sensitive in vitro biomaterial assessment based on human primary macrophages depends on test conditions. Moreover, possible clinical scenarios such as lipopolysaccharide contamination, contact to autologous blood plasma, and presence of IL-4 in an immune niche influence the outcome of a biomaterial ranking. Nevertheless, by using glass, titanium, polytetrafluorethylene, silicone, and polyethylene representing a specific material-induced fibrotic response and by comparison to literature data, we were able to identify a test condition that provides a high correlation to state-of-the-art in vivo studies. Most important, biomaterial ranking obtained under native plasma test conditions showed a high predictive accuracy compared to in vivo assessments, strengthening a biomimetic three-dimensional in vitro test platform.}, language = {en} }