@article{PeckSchugZhangetal.2016, author = {Peck, Barrie and Schug, Zachary T. and Zhang, Qifeng and Dankworth, Beatrice and Jones, Dylan T. and Smethurst, Elizabeth and Patel, Rachana and Mason, Susan and Jian, Ming and Saunders, Rebecca and Howell, Michael and Mitter, Richard and Spencer-Dene, Bradley and Stamp, Gordon and McGarry, Lynn and James, Daniel and Shanks, Emma and Aboagye, Eric O. and Critchlow, Susan E. and Leung, Hing Y. and Harris, Adrian L. and Wakelam, Michael J. O. and Gottlieb, Eyal and Schulze, Almut}, title = {Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments}, series = {Cancer \& Metabolism}, volume = {4}, journal = {Cancer \& Metabolism}, number = {6}, doi = {10.1186/s40170-016-0146-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145905}, year = {2016}, abstract = {Background Enhanced macromolecule biosynthesis is integral to growth and proliferation of cancer cells. Lipid biosynthesis has been predicted to be an essential process in cancer cells. However, it is unclear which enzymes within this pathway offer the best selectivity for cancer cells and could be suitable therapeutic targets. Results Using functional genomics, we identified stearoyl-CoA desaturase (SCD), an enzyme that controls synthesis of unsaturated fatty acids, as essential in breast and prostate cancer cells. SCD inhibition altered cellular lipid composition and impeded cell viability in the absence of exogenous lipids. SCD inhibition also altered cardiolipin composition, leading to the release of cytochrome C and induction of apoptosis. Furthermore, SCD was required for the generation of poly-unsaturated lipids in cancer cells grown in spheroid cultures, which resemble those found in tumour tissue. We also found that SCD mRNA and protein expression is elevated in human breast cancers and predicts poor survival in high-grade tumours. Finally, silencing of SCD in prostate orthografts efficiently blocked tumour growth and significantly increased animal survival. Conclusions Our data implicate lipid desaturation as an essential process for cancer cell survival and suggest that targeting SCD could efficiently limit tumour expansion, especially under the metabolically compromised conditions of the tumour microenvironment.}, language = {en} } @unpublished{LoefflerMayerTrujilloVieraetal.2018, author = {L{\"o}ffler, Mona C. and Mayer, Alexander E. and Trujillo Viera, Jonathan and Loza Valdes, Angel and El-Merahib, Rabih and Ade, Carsten P. and Karwen, Till and Schmitz, Werner and Slotta, Anja and Erk, Manuela and Janaki-Raman, Sudha and Matesanz, Nuria and Torres, Jorge L. and Marcos, Miguel and Sabio, Guadalupe and Eilers, Martin and Schulze, Almut and Sumara, Grzegorz}, title = {Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity}, series = {The EMBO Journal}, journal = {The EMBO Journal}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176093}, year = {2018}, abstract = {Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others, activates G-protein coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the β3-adrenergic receptor (ADRB3) in a CCAAT/enhancerbinding protein (C/EBP)-α and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, loss of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.}, language = {en} } @article{BensaadFavaroLewisetal.2014, author = {Bensaad, Karim and Favaro, Elena and Lewis, Caroline A. and Peck, Barrie and Lord, Simon and Collins, Jennifer M. and Pinnick, Katherine E. and Wigfield, Simon and Buffa, Francesca M. and Li, Ji-Liang and Zhang, Qifeng and Wakelam, Michael J. O. and Karpe, Fredrik and Schulze, Almut and Harris, Adrian L.}, title = {Fatty Acid Uptake and Lipid Storage Induced by HIF-1 alpha Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation}, series = {Cell Reports}, volume = {9}, journal = {Cell Reports}, number = {1}, issn = {2211-1247}, doi = {10.1016/j.celrep.2014.08.056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115162}, pages = {349-365}, year = {2014}, abstract = {An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1 alpha (HIF-1 alpha)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O-2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component) significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via beta-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo.}, language = {en} } @article{MayerLoefflerLozaValdesetal.2019, author = {Mayer, Alexander E. and L{\"o}ffler, Mona C. and Loza Vald{\´e}s, Angel E. and Schmitz, Werner and El-Merahbi, Rabih and Trujillo-Viera, Jonathan and Erk, Manuela and Zhang, Thianzhou and Braun, Ursula and Heikenwalder, Mathias and Leitges, Michael and Schulze, Almut and Sumara, Grzegorz}, title = {The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling}, series = {Science Signaling}, journal = {Science Signaling}, edition = {accepted manuscript}, doi = {10.1126/scisignal.aav9150}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250025}, year = {2019}, abstract = {Hepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletion of PKD3 in mice improved insulin-induced glucose tolerance. However, increased insulin signaling in the absence of PKD3 promoted lipogenesis mediated by SREBP (sterol regulatory element-binding protein) and consequently increased triglyceride and cholesterol content in the livers of PKD3-deficient mice fed a high-fat diet. Conversely, hepatic-specific overexpression of a constitutively active PKD3 mutant suppressed insulin-induced signaling and caused insulin resistance. Our results indicate that PKD3 provides feedback on hepatic lipid production and suppresses insulin signaling. Therefore, manipulation of PKD3 activity could be used to decrease hepatic lipid content or improve hepatic insulin sensitivity.}, language = {en} } @article{LoehrHaertigSchulzeetal.2022, author = {L{\"o}hr, Mario and H{\"a}rtig, Wolfgang and Schulze, Almut and Kroiß, Matthias and Sbiera, Silviu and Lapa, Constantin and Mages, Bianca and Strobel, Sabrina and Hundt, Jennifer Elisabeth and Bohnert, Simone and Kircher, Stefan and Janaki-Raman, Sudha and Monoranu, Camelia-Maria}, title = {SOAT1: A suitable target for therapy in high-grade astrocytic glioma?}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms23073726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284178}, year = {2022}, abstract = {Targeting molecular alterations as an effective treatment for isocitrate dehydrogenase-wildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages.}, language = {en} } @article{BartelPeinPopperetal.2019, author = {Bartel, Karin and Pein, Helmut and Popper, Bastian and Schmitt, Sabine and Janaki-Raman, Sudha and Schulze, Almut and Lengauer, Florian and Koeberle, Andreas and Werz, Oliver and Zischka, Hans and M{\"u}ller, Rolf and Vollmar, Angelika M. and Schwarzenberg, Karin von}, title = {Connecting lysosomes and mitochondria - a novel role for lipid metabolism in cancer cell death}, series = {Cell Communication and Signaling}, volume = {17}, journal = {Cell Communication and Signaling}, doi = {10.1186/s12964-019-0399-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221524}, year = {2019}, abstract = {Background The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. Methods LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. Results Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. Conclusion This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors.}, language = {en} } @article{PeixotoJanakiRamanSchlickeretal.2021, author = {Peixoto, Joana and Janaki-Raman, Sudha and Schlicker, Lisa and Schmitz, Werner and Walz, Susanne and Winkelkotte, Alina M. and Herold-Mende, Christel and Soares, Paula and Schulze, Almut and Lima, Jorge}, title = {Integrated metabolomics and transcriptomics analysis of monolayer and neurospheres from established glioblastoma cell lines}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {6}, issn = {2072-6694}, doi = {10.3390/cancers13061327}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234110}, year = {2021}, abstract = {Altered metabolic processes contribute to carcinogenesis by modulating proliferation, survival and differentiation. Tumours are composed of different cell populations, with cancer stem-like cells being one of the most prominent examples. This specific pool of cells is thought to be responsible for cancer growth and recurrence and plays a particularly relevant role in glioblastoma (GBM), the most lethal form of primary brain tumours. Here, we have analysed the transcriptome and metabolome of an established GBM cell line (U87) and a patient-derived GBM stem-like cell line (NCH644) exposed to neurosphere or monolayer culture conditions. By integrating transcriptome and metabolome data, we identified key metabolic pathways and gene signatures that are associated with stem-like and differentiated states in GBM cells, and demonstrated that neurospheres and monolayer cells differ substantially in their metabolism and gene regulation. Furthermore, arginine biosynthesis was identified as the most significantly regulated pathway in neurospheres, although individual nodes of this pathway were distinctly regulated in the two cellular systems. Neurosphere conditions, as opposed to monolayer conditions, cause a transcriptomic and metabolic rewiring that may be crucial for the regulation of stem-like features, where arginine biosynthesis may be a key metabolic pathway. Additionally, TCGA data from GBM patients showed significant regulation of specific components of the arginine biosynthesis pathway, providing further evidence for the importance of this metabolic pathway in GBM.}, language = {en} } @article{KleinHesslingMuhammadKleinetal.2017, author = {Klein-Hessling, Stefan and Muhammad, Khalid and Klein, Matthias and Pusch, Tobias and Rudolf, Ronald and Fl{\"o}ter, Jessica and Qureischi, Musga and Beilhack, Andreas and Vaeth, Martin and Kummerow, Carsten and Backes, Christian and Schoppmeyer, Rouven and Hahn, Ulrike and Hoth, Markus and Bopp, Tobias and Berberich-Siebelt, Friederike and Patra, Amiya and Avots, Andris and M{\"u}ller, Nora and Schulze, Almut and Serfling, Edgar}, title = {NFATc1 controls the cytotoxicity of CD8\(^{+}\) T cells}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {511}, doi = {10.1038/s41467-017-00612-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170353}, year = {2017}, abstract = {Cytotoxic T lymphocytes are effector CD8\(^{+}\) T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1\(^{-/-}\) cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1\(^{-/-}\) CD8\(^{+}\) T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1\(^{-/-}\), but not Nfatc2\(^{-/-}\) CD8\(^{+}\) T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions.}, language = {en} } @article{GattoSchulzeNielsen2016, author = {Gatto, Francesco and Schulze, Almut and Nielsen, Jens}, title = {Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics}, series = {Cell Reports}, volume = {16}, journal = {Cell Reports}, number = {3}, doi = {10.1016/j.celrep.2016.06.038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164814}, pages = {878-895}, year = {2016}, abstract = {Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network.}, language = {en} } @article{BartmannJanakiRamanFloeteretal.2018, author = {Bartmann, Catharina and Janaki Raman, Sudha R. and Fl{\"o}ter, Jessica and Schulze, Almut and Bahlke, Katrin and Willingstorfer, Jana and Strunz, Maria and W{\"o}ckel, Achim and Klement, Rainer J. and Kapp, Michaela and Djuzenova, Cholpon S. and Otto, Christoph and K{\"a}mmerer, Ulrike}, title = {Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation}, series = {Cancer \& Metabolism}, volume = {6}, journal = {Cancer \& Metabolism}, number = {8}, doi = {10.1186/s40170-018-0180-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175607}, year = {2018}, abstract = {Background: Ketogenic diets (KDs) or short-term fasting are popular trends amongst supportive approaches for cancer patients. Beta-hydroxybutyrate (3-OHB) is the main physiological ketone body, whose concentration can reach plasma levels of 2-6 mM during KDs or fasting. The impact of 3-OHB on the biology of tumor cells described so far is contradictory. Therefore, we investigated the effect of a physiological concentration of 3 mM 3-OHB on metabolism, proliferation, and viability of breast cancer (BC) cells in vitro. Methods: Seven different human BC cell lines (BT20, BT474, HBL100, MCF-7, MDA-MB 231, MDA-MB 468, and T47D) were cultured in medium with 5 mM glucose in the presence of 3 mM 3-OHB at mild hypoxia (5\% oxygen) or normoxia (21\% oxygen). Metabolic profiling was performed by quantification of the turnover of glucose, lactate, and 3-OHB and by Seahorse metabolic flux analysis. Expression of key enzymes of ketolysis as well as the main monocarboxylic acid transporter MCT2 and the glucose-transporter GLUT1 was analyzed by RT-qPCR and Western blotting. The effect of 3-OHB on short- and long-term cell proliferation as well as chemo- and radiosensitivity were also analyzed. Results: 3-OHB significantly changed the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in BT20 cells resulting in a more oxidative energetic phenotype. MCF-7 and MDA-MB 468 cells had increased ECAR only in response to 3-OHB, while the other three cell types remained uninfluenced. All cells expressed MCT2 and GLUT1, thus being able to uptake the metabolites. The consumption of 3-OHB was not strongly linked to mRNA overexpression of key enzymes of ketolysis and did not correlate with lactate production and glucose consumption. Neither 3-OHB nor acetoacetate did interfere with proliferation. Further, 3-OHB incubation did not modify the response of the tested BC cell lines to chemotherapy or radiation. Conclusions: We found that a physiological level of 3-OHB can change the energetic profile of some BC cell lines. However, 3-OHB failed to influence different biologic processes in these cells, e.g., cell proliferation and the response to common breast cancer chemotherapy and radiotherapy. Thus, we have no evidence that 3-OHB generally influences the biology of breast cancer cells in vitro.}, language = {en} }