@article{PeckSchugZhangetal.2016, author = {Peck, Barrie and Schug, Zachary T. and Zhang, Qifeng and Dankworth, Beatrice and Jones, Dylan T. and Smethurst, Elizabeth and Patel, Rachana and Mason, Susan and Jian, Ming and Saunders, Rebecca and Howell, Michael and Mitter, Richard and Spencer-Dene, Bradley and Stamp, Gordon and McGarry, Lynn and James, Daniel and Shanks, Emma and Aboagye, Eric O. and Critchlow, Susan E. and Leung, Hing Y. and Harris, Adrian L. and Wakelam, Michael J. O. and Gottlieb, Eyal and Schulze, Almut}, title = {Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments}, series = {Cancer \& Metabolism}, volume = {4}, journal = {Cancer \& Metabolism}, number = {6}, doi = {10.1186/s40170-016-0146-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145905}, year = {2016}, abstract = {Background Enhanced macromolecule biosynthesis is integral to growth and proliferation of cancer cells. Lipid biosynthesis has been predicted to be an essential process in cancer cells. However, it is unclear which enzymes within this pathway offer the best selectivity for cancer cells and could be suitable therapeutic targets. Results Using functional genomics, we identified stearoyl-CoA desaturase (SCD), an enzyme that controls synthesis of unsaturated fatty acids, as essential in breast and prostate cancer cells. SCD inhibition altered cellular lipid composition and impeded cell viability in the absence of exogenous lipids. SCD inhibition also altered cardiolipin composition, leading to the release of cytochrome C and induction of apoptosis. Furthermore, SCD was required for the generation of poly-unsaturated lipids in cancer cells grown in spheroid cultures, which resemble those found in tumour tissue. We also found that SCD mRNA and protein expression is elevated in human breast cancers and predicts poor survival in high-grade tumours. Finally, silencing of SCD in prostate orthografts efficiently blocked tumour growth and significantly increased animal survival. Conclusions Our data implicate lipid desaturation as an essential process for cancer cell survival and suggest that targeting SCD could efficiently limit tumour expansion, especially under the metabolically compromised conditions of the tumour microenvironment.}, language = {en} } @article{BensaadFavaroLewisetal.2014, author = {Bensaad, Karim and Favaro, Elena and Lewis, Caroline A. and Peck, Barrie and Lord, Simon and Collins, Jennifer M. and Pinnick, Katherine E. and Wigfield, Simon and Buffa, Francesca M. and Li, Ji-Liang and Zhang, Qifeng and Wakelam, Michael J. O. and Karpe, Fredrik and Schulze, Almut and Harris, Adrian L.}, title = {Fatty Acid Uptake and Lipid Storage Induced by HIF-1 alpha Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation}, series = {Cell Reports}, volume = {9}, journal = {Cell Reports}, number = {1}, issn = {2211-1247}, doi = {10.1016/j.celrep.2014.08.056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115162}, pages = {349-365}, year = {2014}, abstract = {An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1 alpha (HIF-1 alpha)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O-2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component) significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via beta-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo.}, language = {en} }