@article{PeckSchugZhangetal.2016, author = {Peck, Barrie and Schug, Zachary T. and Zhang, Qifeng and Dankworth, Beatrice and Jones, Dylan T. and Smethurst, Elizabeth and Patel, Rachana and Mason, Susan and Jian, Ming and Saunders, Rebecca and Howell, Michael and Mitter, Richard and Spencer-Dene, Bradley and Stamp, Gordon and McGarry, Lynn and James, Daniel and Shanks, Emma and Aboagye, Eric O. and Critchlow, Susan E. and Leung, Hing Y. and Harris, Adrian L. and Wakelam, Michael J. O. and Gottlieb, Eyal and Schulze, Almut}, title = {Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments}, series = {Cancer \& Metabolism}, volume = {4}, journal = {Cancer \& Metabolism}, number = {6}, doi = {10.1186/s40170-016-0146-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145905}, year = {2016}, abstract = {Background Enhanced macromolecule biosynthesis is integral to growth and proliferation of cancer cells. Lipid biosynthesis has been predicted to be an essential process in cancer cells. However, it is unclear which enzymes within this pathway offer the best selectivity for cancer cells and could be suitable therapeutic targets. Results Using functional genomics, we identified stearoyl-CoA desaturase (SCD), an enzyme that controls synthesis of unsaturated fatty acids, as essential in breast and prostate cancer cells. SCD inhibition altered cellular lipid composition and impeded cell viability in the absence of exogenous lipids. SCD inhibition also altered cardiolipin composition, leading to the release of cytochrome C and induction of apoptosis. Furthermore, SCD was required for the generation of poly-unsaturated lipids in cancer cells grown in spheroid cultures, which resemble those found in tumour tissue. We also found that SCD mRNA and protein expression is elevated in human breast cancers and predicts poor survival in high-grade tumours. Finally, silencing of SCD in prostate orthografts efficiently blocked tumour growth and significantly increased animal survival. Conclusions Our data implicate lipid desaturation as an essential process for cancer cell survival and suggest that targeting SCD could efficiently limit tumour expansion, especially under the metabolically compromised conditions of the tumour microenvironment.}, language = {en} } @article{GattoSchulzeNielsen2016, author = {Gatto, Francesco and Schulze, Almut and Nielsen, Jens}, title = {Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics}, series = {Cell Reports}, volume = {16}, journal = {Cell Reports}, number = {3}, doi = {10.1016/j.celrep.2016.06.038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164814}, pages = {878-895}, year = {2016}, abstract = {Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network.}, language = {en} } @article{BensaadFavaroLewisetal.2014, author = {Bensaad, Karim and Favaro, Elena and Lewis, Caroline A. and Peck, Barrie and Lord, Simon and Collins, Jennifer M. and Pinnick, Katherine E. and Wigfield, Simon and Buffa, Francesca M. and Li, Ji-Liang and Zhang, Qifeng and Wakelam, Michael J. O. and Karpe, Fredrik and Schulze, Almut and Harris, Adrian L.}, title = {Fatty Acid Uptake and Lipid Storage Induced by HIF-1 alpha Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation}, series = {Cell Reports}, volume = {9}, journal = {Cell Reports}, number = {1}, issn = {2211-1247}, doi = {10.1016/j.celrep.2014.08.056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115162}, pages = {349-365}, year = {2014}, abstract = {An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1 alpha (HIF-1 alpha)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O-2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component) significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via beta-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo.}, language = {en} } @article{SchwarzLukassenBhandareetal., author = {Schwarz, Jessica Denise and Lukassen, S{\"o}ren and Bhandare, Pranjali and Eing, Lorenz and Snaebj{\"o}rnsson, Marteinn Thor and Garc{\´i}a, Yiliam Cruz and Kisker, Jan Philipp and Schulze, Almut and Wolf, Elmar}, title = {The glycolytic enzyme ALDOA and the exon junction complex protein RBM8A are regulators of ribosomal biogenesis}, series = {Frontiers in Cell and Developmental Biology}, volume = {10}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2022.954358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290875}, abstract = {Cellular growth is a fundamental process of life and must be precisely controlled in multicellular organisms. Growth is crucially controlled by the number of functional ribosomes available in cells. The production of new ribosomes depends critically on the activity of RNA polymerase (RNAP) II in addition to the activity of RNAP I and III, which produce ribosomal RNAs. Indeed, the expression of both, ribosomal proteins and proteins required for ribosome assembly (ribosomal biogenesis factors), is considered rate-limiting for ribosome synthesis. Here, we used genetic screening to identify novel transcriptional regulators of cell growth genes by fusing promoters from a ribosomal protein gene (Rpl18) and from a ribosomal biogenesis factor (Fbl) with fluorescent protein genes (RFP, GFP) as reporters. Subsequently, both reporters were stably integrated into immortalized mouse fibroblasts, which were then transduced with a genome-wide sgRNA-CRISPR knockout library. Subsequently, cells with altered reporter activity were isolated by FACS and the causative sgRNAs were identified. Interestingly, we identified two novel regulators of growth genes. Firstly, the exon junction complex protein RBM8A controls transcript levels of the intronless reporters used here. By acute depletion of RBM8A protein using the auxin degron system combined with the genome-wide analysis of nascent transcription, we showed that RBM8A is an important global regulator of ribosomal protein transcripts. Secondly, we unexpectedly observed that the glycolytic enzyme aldolase A (ALDOA) regulates the expression of ribosomal biogenesis factors. Consistent with published observations that a fraction of this protein is located in the nucleus, this may be a mechanism linking transcription of growth genes to metabolic processes and possibly to metabolite availability.}, language = {en} }