@phdthesis{Seier2020, author = {Seier, Kerstin}, title = {Investigation of dynamic processes of prototypical class A GPCRs by single-molecule microscopy}, doi = {10.25972/OPUS-19973}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199739}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In this work, two projects were pursued. In the first project, I investigated two different subtypes of opioid receptors, which play a key role as target for analgesia. A set of subtype specific fluorescent ligands for μ opioid receptor (MOR) and δ opioid receptor (DOR) was characterised and used to gain insights into the diffusion behaviour of those receptors. It was shown that the novel ligands hold photophysical and pharmacological properties making them suitable for single-molecule microscopy. Applying them to wild-type receptors expressed in living cells revealed that both sub-types possess a heterogeneous diffusion behaviour. Further- more, the fluorescent ligands for the MOR were used to investigate homodomerisation, a highly debated topic. The results reveal that only ≈ 5 \% of the receptors are present as homodimers, and thus the majority is monomeric. G-protein coupled receptors (GPCRs) play a major role as drug targets. Accordingly, understanding the activation process is very important. For a long time GPCRs have been believed to be either active or inactive. In recent years several studies have shown, that the reality is more complex, involving more substates. [1, 2, 3, 4] In this work the α 2A AR was chosen to investigate the activation process on a single-molecule level, thus being able to distinguish also rare or short-lived events that are hidden in ensemble mea- surements. With this aim, the receptor was labelled intracellular with two fluorophores using supported membranes. Thus it was possible to acquire movies showing qualita- tively smFRET events. Unfortunately, the functionality of the used construct could not be demonstrated. To recover the functionality the CLIP-tag in the third intracellular loop was replaced successfully with an amber codon. This stop codon was used to insert an unnatural amino acid. Five different mutants were created and tested and the most promising candidate could be identified. First ensemble FRET measurements indicated that the functionality might be recovered but further improvements would be needed. Overall, I could show that single-molecule microscopy is a versatile tool to investigate the behaviour of typical class A GPCRs. I was able to show that MOR are mostly monomeric under physiological expression levels. Furthermore, I could establish intra- cellular labelling with supported membranes and acquire qualitative smFRET events.}, subject = {PhD thesis pharmacology}, language = {en} }