@article{MaCalvoWangetal.2015, author = {Ma, Eric Yue and Calvo, M. Reyes and Wang, Jing and Lian, Biao and M{\"u}hlbauer, Mathias and Br{\"u}ne, Christoph and Cui, Yong-Tao and Lai, Keji and Kundhikanjana, Worasom and Yang, Yongliang and Baenninger, Matthias and K{\"o}nig, Markus and Ames, Christopher and Buhmann, Hartmut and Leubner, Philipp and Molenkamp, Laurens W. and Zhang, Shou-Cheng and Goldhaber-Gordon, David and Kelly, Michael A. and Shen, Zhi-Xun}, title = {Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7252}, doi = {10.1038/ncomms8252}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143185}, year = {2015}, abstract = {The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a noninverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.}, language = {en} }