@article{YongJacobowitzBaroneetal.1994, author = {Yong, Liu and Jacobowitz, David M. and Barone, Frank and McCarron, Richard and Spatz, Maria and Feuerstein, Giora and Hallenbeck, John M. and Sir{\´e}n, Anna-Leena}, title = {Quantitation of perivascular monocyte / macrophages around cerebral blood vessels of hypertensive and aged rats}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86800}, year = {1994}, abstract = {The numbers of monocytes and macrophages in the walls of cerebral blood vessels were counted on perfusion-fixed frozen brain sections (16 JLffi) of spontaneously hypertensive rats (SHR), stroke-prone SHR (SHR-SP), normotensive Wistar-Kyoto (WKY) rats, and young (16-week-old) and old (2-year-old) normotensive Sprague-Dawley rats (SD-l6w and SD-2y, respectively) using monoclonal antiborlies against rat macrophages (ED2). The staining was visualized with fluoresceinlabeled second antiborlies. The ED2-specific staining in brain sections was restricted to macrophages in a perivascular location. The number of perivascular cells per square millimeter of high-power field was significantly greater in SHR-SP (8.6 ± 2.1; n = 4) and SHR (6. 7 ± 0.9; n = 6) than in normotensive WKY (4.0 ± 0.5; n = 6; p <0.01). The number of perivascular macrophages was also greater in SD-2y (7.5 ± 2.7; n = 9) than in SD-l6w (2.9 ± 1.8; n = 8; p < 0.01). No ED2 staining was found in the resident microglia or in the endothelial cells, which were identified by double staining with rhodamine-labeled anti-factor VIII-related antigen antiborlies. The results suggest that the stroke risk factors hypertension and advanced age are associated with increased subendothelial accumulation of monocytes and macrophages. This accumulation could increase the tendency for the endothelium to convert from an anticoagulant to a procoagulant surface in response to mediators released from these subendothelial cells.}, subject = {Willebrand-Faktor}, language = {en} } @article{SirenHeldmanDoronetal.1992, author = {Sir{\´e}n, Anna-Leena and Heldman, Eliahu and Doron, David and Yue, Tian-Li and Liu, Yong and Feuerstein, G. and Hallenbeck, JM}, title = {Release of proinflammatory and prothrombbtic mediators in the brain and peripheral circulation in spontaneously hypertensive and normotensive Wistar-Kyoto rats}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47469}, year = {1992}, abstract = {Background and Purpose: We reported previously that stroke risk factors prepared the brain stem for the development of ischemia and hemorrhage and induced the production of tumor necrosis factor following an intrathecal injection of Iipopolysaccharide, a prototypic monocyte-activating stimulus. This study evaluates whether blood or brain cells of hypertensive rats produce more proinflammatory and prothrombotic mediators than do blood or brain cells of normotensive rats. MethotJs: Levels of tumor necrosis factor, platelet-activating factor, 6-ketoprostaglandin F1a, and thromboxane B2 in the cerebrospinal fluid and blood of spontaneously hypertensive and normotensive Wistar-Kyoto rats were monitored before and after achallenge with Iipopolysaccharide. Results: Little or no activity from these media tors was found in the cerebrospinal fluid or blood of saline-injected control animals. Intravenous administration of Iipopolysaccharide (0.001, 0.1, and 1.8 mg/kg) produced dose-dependent increases in blood levels of all mediators in hypertensive rats. In normotensive rats the levels were less than in hypertensive rats and were not c1early dose-related. When Iipopolysaccharide was injected intracerebroventricularly, more tumor necrosis factor was measured in the cerebrospinal fluid than in the blood, suggesting local synthesis of this cytokine. Levels of tumor necrosis factor and platelet-activating factor in the cerebrospinal fluid were higher in hypertensive than in normotensive rats. The thromboxane A2/prostacyclin ratio was not aItered significantly between the two rat strains. Conclusions: It is suggested that the higher incidence of brain stem ischemia and hemorrhage after the intrathecal injection oflipopolysaccharide in hypertensive rats than in normotensive rats might be related to the higher levels of the two cytotoxic factors tumor necrosis factor and platelet-activating factor produced in response to such challenge.}, subject = {Gehirn}, language = {en} } @article{SirenLiuFeuersteinetal.1993, author = {Sir{\`e}n, Anna-Leena and Liu, Y. and Feuerstein, G. and Hallenbeck, JM}, title = {Increased release of tumor necrosis factor alpha into the cerebrospinal fluid and peripheral circulation of aged rats}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47997}, year = {1993}, abstract = {Background and Purpose: We earlier reported that risk factors for stroke prepare brain stem tissue for a modified Shwartzman reaction, incIuding the development of ischemia and hemorrhage and the production of tumor necrosis factor-a, after a provocative dose of lipopolysaccharide. In the present study, we sought to determine whether blood and central nervous system cells of rats with the stroke risk factor of advanced age produce more proinflammatory and prothrombotic media tors than do those of young rats of the same strain. Methods: Levels of tumor necrosis factor-a and platelet activating factor in the cerebrospinal fluid and tumor necrosis factor-a in the serum of 2-year-old and 16-week-old Sprague-Dawley rats were monitored before and after challenge with lipopolysaccharide. Results: No consistent tumor necrosis factor-a activity was found in the cerebrospinal fluid or blood of control animals. Intravenous administration of lipopolysaccharide (1.8 mg/kg) increased serum tumor necrosis factor-a levels but had no effect on tumor necrosis factor-a in the cerebrospinal fluid. Serum tumor necrosis factor-a increased much more in aged rats than in young rats. When lipopolysaccharide was injected intracerebroventricularly, tumor necrosis factor-a activity in cerebrospinal fluid increased significantly more in old rats than in young rats. Baseline levels of platelet activating factor in cerebrospinal fluid were significantly higher in old rats than in young rats, and the levels increased to a greater degree in aged rats on stimulation. Conclusions: Rats with the stroke risk factor of advanced age respond to lipopolysaccharide with a more exuberant production of tumor necrosis factor-a and platelet activating factor than young rats of the same strain. These findings are consistent with our working hypothesis that perivascular cells are capable of exaggerated signaling of endothelium through cytokines such as tumor necrosis factor-a in animals with stroke risk factors. The effect of such signaling might be to prepare the endothelium of the local vascular segment for thrombosis or hemorrhage in accord with the local Shwartzman reaction paradigm.}, subject = {Gehirn}, language = {en} } @article{LiuMcDonnellYoungetal.1993, author = {Liu, T. and McDonnell, PC and Young, PR and White, RF and Sir{\`e}n, Anna-Leena and Hallenbeck, JM and Barone, FC and Feuerstein, Giora}, title = {Interleukin-1ß mRNA expression in ischemic rat cortex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47442}, year = {1993}, abstract = {Background and Pur pose: Interleukin-1ß is a proinftammatory cytokine produced by blood-borne and resident brain inftammatory cells. The present study was conducted to determine if interleukin-1ß mRNA was produced in the brain of rats subjected to permanent focal ischemia. Methods: Rat interleukin-1ß cDNA, synthesized from stimulated rat peritoneal macrophage RNA by reverse transcription and polymerase chain reaction and c10ned in plasmid Bluescript KS+, was used to evaluate the expression of interleukin-1ß mRNA in cerebral cortex from spontaneously hypertensive rats and normotensive rats subjected to permanent middle cerebral artery occlusion. Interleukin-1ß mRNA was quantified by Northern blot analysis and compared with rat macrophage RNA standard. To correct for gel loading, blots were also analyzed with cyclophilin cDNA, which encodes an abundant, conserved protein that was unchanged by the experimental conditions. Results: Interleukin-1ß mRNA produced in the ischemic zone was significantly increased from 6 hours to 120 hours, with a maximum of211±24\% ofinterleukin-1ß reference standard, ie, 0.2 ng stimulated rat macrophage RNA, mRNA compared with the level in nonischemic cortices (4±2\%) at 12 hours after ischemia (P<.OI; n=6). Interleukin-1ß mRNA at 12 hours after ischemia was markedly elevated in hypertensive rats over levels found in two normotensive rat strains. Neurological deficits were also apparent only in the hypertensive rats. Conclusions: Brain interleukin-1ß mRNA is elevated acutely after permanent focal ischemia and especially in hypertensive rats. These data suggest that this potent proinflammatory and procoagulant cytokine might have a role in brain damage following ischemia.}, subject = {Gehirn}, language = {en} } @article{FrerichsSirenFeuersteinetal.1992, author = {Frerichs, K. and Sir{\`e}n, Anna-Leena and Feuerstein, G. and Hallenbeck, JM}, title = {The onset of postischemic hypoperfusion in rats is precipitous and may be controlled by local neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47980}, year = {1992}, abstract = {Background and Purpose: Reperfusion following transient global cerebral ischemia is characterized by an initial hyperemic phase, which precedes hypo perfusion. The pathogenesis of these flow derangements remains obscure. Our study investigates the dynamics of postischemic cerebral blood flow changes, with particular attention to the role of local neurons. Metho(Js: We assessed local cortical blood flow continuously by laser Doppler flowmetry to permit observation of any rapid flow changes after forebrain ischemia induced by four-vessel occlusion for 20 minutes in rats. To investigate the role of local cortical neurons in the regulation of any blood flow fluctuations, five rats received intracortical microinjections of a neurotoxin (10 p,g ibotenic acid in 1 p,1; 1.5-mm-depth parietal cortex) 24 hours before ischemia to induce selective and localized neuronal depletion in an area corresponding to the sampie volume of the laser Doppler probe (1 mm3 ). Local cerebral blood flow was measured within the injection site and at an adjacent control site. Results: Ischemia was followed by marked hyperemia (235 ±23\% of control, n =7), followed by secondary hypoperfusion (45±3\% of control, n=7). The transition from hyperemia to hypoperfusioo occurred not gradually but precipitously (maximal slope of flow decay: 66±6\%/min; n=7). In ibotenic acid-injected rats, hyperemia was preserved at the injection site, but the sudden decline of blood flow was abolished (maximal slope of flow decay: 5±3\%/min compared with 53±8\%/min at the control site; n=5, p