@article{SirenFeuerstein1990, author = {Sir{\´e}n, Anna-Leena and Feuerstein, G.}, title = {Cardiovascular effects of anatoxin-a in the conscious rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63103}, year = {1990}, abstract = {Cardiovascular Effects of Anatoxin-A in the Conscious Rat. SJREN, A.-L., AND FEUERSTEIN, G. (1990). Toxicol. Appl. Pharmacol. 102,91-100. The effects ofanatoxin-A on mean arterial pressure (MAP), heart rate, cardiac index (CI), and blood flow (BF) in hindquarter (HQ), renal (R). and mesenteric (M) vascular beds were studied after intravenous (iv) and intracerebroventricular (icv) administration in the conscious rat. The pharmacological profile of anatoxin-A was further compared to nicotine administered iv and icv. MAP and heart rate were measured from femoral artery, CI by thermodilution method, and blood flow by Doppler velocimetry. Anatoxin-A and nicotine (30, 100 and 300 1-!g/kg iv) produced an increase in MAP with concomitant bradycardia. The highest doses increased Cl. MBF and RBF decreased due to a vasoconstriction in M and R vasculature. These effects were attenuated by the ganglion blocker chlorisondamine (5 mg/kg, iv). Anatoxin-A ( 100 1-!g/k~ iv) increased plasma epinephrine Ievels by 2- fold with virtually no effect on norepinephrine whereas nicotine ( 100 ~oLg/kg, iv) increased plasma epinephrine and norepinephrine by 20- to 30-fold. Central administration of anatoxin-A and nicotine (30-100 ,ug/kg icv) increased MAP with no effect on heart rate and produced M and R vasoconstriction. In summary, the present study demonstrates that anatoxin-A acts as a nicotinic cholinergic agonist in the c.onscious rat after both systemic and centrat administration. Anatoxin-A and nicotine produced pressor and reno-splanchnic vasoconstrictor responses and at high doses increased cardiac output. These effects were mediated by activation ofthe nicotinic receptors in the adrenal medulla and sympathetic ganglia. However, marked differences were found in the potency ofanatoxin-A versus nicotine to stimulate the sympathoadrenomedullary axis.}, subject = {Neurobiologie}, language = {en} } @article{PaakkariPaakkariSirenetal.1990, author = {Paakkari, P. and Paakkari, I. and Sir{\´e}n, Anna-Leena and Feuerstein, G.}, title = {Respiratory and locomotor stimulation by low doses of dermorphin - a Mu\(_1\)-receptor mediated effect}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63110}, year = {1990}, abstract = {The selective opioid mu receptor agonist dermorphin increased the locomotor activity of rats dose dependently at 1 0 to 1 00 pmol/kg i.c.v. Respiratory rate, relative tidal volume and respiratory minute volume also increased unrelated to changes in locomotor activity. Higher doses, on the other hand, produced catalepsy and respiratory depression. Pretreatment of the rats with the mu,-selective antagonist naloxonazine (10 mg/kg i.v.) blocked the stimulant locomotor and respiratory effects of low doses of dermorphin (1 0--1 00 pmol/kg), but potentiated the respiratory depressant effect of a high dose (1 0 nmol/kg) of dermorphin. The selective benzodiazepine antagonist flumazenil (5 mg/kg), which has been shown previously to antagonize catalepsy and respiratory depression produced by relatively high doses of dermorphin, did not antagonize the respiratory or locomotor stimulant effect of dermorphin. The data suggest that mu\(_1\)-opioid receptors are responsible for the low dose stimulant effects of dermorphin on locomotor activity and respiration whereas mu\(_2\) receptors mediate the respiratory depressant effect of dermorphin.}, subject = {Neurobiologie}, language = {en} } @article{McCarronWangSirenetal.1994, author = {McCarron, R. M. and Wang, L. and Sir{\´e}n, Anna-Leena and Spatz, M. and Hallenbeck, J. M.}, title = {Monocyte adhesion to cerebromicrovascular endothelial cells derived from hypertensive and normotensive rats}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62960}, year = {1994}, abstract = {No abstract available}, subject = {Neurobiologie}, language = {en} } @article{PaakkariPaakkariLandesetal.1993, author = {Paakkari, P. and Paakkari, I. and Landes, P. and Sir{\´e}n, Anna-Leena and Feuerstein, G.}, title = {Respiratory \(\mu\)-Opioid and benzodiazepine interactions in the understrained rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62974}, year = {1993}, abstract = {lnteractions of p-opioid receptors with the benzodiazepine system were studied by examining the modulatory effects of flumazenil (a benzodiazepine antagonist) and alprazolam (a benzodiazepine agonist) on the respiratory effects ofthe opioid peptide dermorphin. Dermorphin, 1-30 nmol administered i.c.v., to conscious, unrestrained rats decreased ventilation rate (VR) and minute volume (MV) dose-dependently. The ventilatory depression was antagonized by naloxone and by the benzodiazepine antagonist flumazenil. The benzodiazepine alprazolam potentiateri the respiratory inhibition of a small (I nmol) dose of dermorphin but antagonized that of a higher dos:~ (3 nmol). The results suggest that the benzodiazepine/GABA receptor complex modulates respiratory depression induced by centrat p-receptor Stimulation in the rat.}, subject = {Neurobiologie}, language = {en} } @article{PaakkariPaakkariVonhofetal.1993, author = {Paakkari, P. and Paakkari, I. and Vonhof, S. and Feuerstein, G. and Sir{\´e}n, Anna-Leena}, title = {Dermorphin analog Tyr-D-Arg\(^2\)-Phe-sarcosine-induces opioid analgesia and respiratory stimulation - the role of Mu\(_1\)- receptors?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62984}, year = {1993}, abstract = {Tyr-o-Arg\(^2\)-Phe-sarcosine\(^4\) (TAPS), a mu-selective tetrapeptide analog of dermorphin, induced sustained antinociception and stimulated ventilatory minute volume (MV) at the doses of 3 to 100 pmol i.c.v. The doses of 30 and 100 pmol i.c.v. induced catalepsy. The effect of TAPS on MV was in negative correlation with the dose and the maximal response was achieved by the lowest (3 pmol) dose (+63 ± 23\%, P < .05). Morphine, an agonist at both mu\(_1\) and mu\(_2\) sites, at a dose of 150 nmol i.c.v. (equianalgetic to 100 pmol of TAPS decreased the MV by 30\%, due to a decrease in ventilatory tidal volume. The antinociceptive effect of TAPS was antagonized by naloxone and the mu, receptor antagonist, naloxonazine. Naloxonazine also attenuated the catalepsy produced by 1 00 pmol of TAPS i.c. v. and the respiratory Stimulation produced by 3 pmol of TAPS i.c.v. Pretreatment with 30 pmol of TAPS antagonized the respiratory depression induced by the mu opioid agonist dermorphin (changes in MV after dermorphin alone at 1 or 3 nmol were -22 ± 1 0\% and -60 ± 9\% and, after pretreatment with TAPS, +44 ± 11 \% and -18 ± 5\%, respectively). After combined pretreatment with naloxonazine and TAPS, 1 nmol of dermorphin had no significant effect on ventilation. In contrast, pretreatment with a low respiratory stimulant dose (10 pmol i.c.v.) of dermorphin did not modify the effect of 1 nmol of dermorphin. ln conclusion, the antinociceptive, cataleptic and respiratory stimulant effects of TAPS appear to be a related to its agonist action at the mu, opioid receptors. TAPS did not induce respiratory depression (a mu\(_2\) opioid effect) but antagonized the respiratory depressant effect of another mu agonist. Thus, in vivo TAPS appears to act as a mu\(_2\) receptor antagonist.}, subject = {Neurobiologie}, language = {en} } @article{XuNaeveriFrerichsetal.1993, author = {Xu, K. and N{\"a}veri, L. and Frerichs, K. and Hallenbeck, J. M. and Feuerstein, G. and Davis, J. N. and Sir{\´e}n, Anna-Leena}, title = {Extracellular catecholamine levels in rat hippocampus after a selective alpha2-adrenoceptor antagonist or a selective dopamnie uptake inhibitor: Evidence for dopamine release from local dopaminergic nerve terminals}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62997}, year = {1993}, abstract = {The effect of 6-chloro-2,3,4,5-tetrahydro-3-methyi-1-H-3-benzazepine (SKF 86466), a selectlve nonimldazoline alpha-2 adrenoceptor antagonlst, on hippocampal re1ease of norepinephrine and dopamlne in conscious rats was lnvestigated by /n vlvo mlcrodialysis and high-pressure liquid chromatography. Additionally, extracellular concentrations of hippocampal dopamine (DA) and norepinephrtne (NE), durtng Infusion of selective monoamine uptake Inhibitors, were determined in freely moving rats. The basal concentration of NE in the dialysate was 4.9 ± 0.3 pg/20 pl. lntravenous admlnistratlon of 5 or 10 mgJkg of SKF 86466 was associated wlth a transierlt inc:rease (30 min) of 2-fold (12 ± 1 pg/20 ,d; p < .05) and 8-fold (39 ± 3 pg/20 pl; p < .05), respectlvely, in dlalysate NE, whereas a 1-mgfkg dose had no effect. DA was not detected in basal dlalysates, but after the adminlstratlon of 5 or 10 mgJkg of SKF 86466, 3.9 ± 0.4 and 6.4 ± 0.6 pg/20 pl, respectlvely, was present in the dialysates. The rnaxlmum increase in dialysate DA was reached 60 to 90 min after SKF 86466. The DA was not derived from plasma because plasma NE was elevated after the 5 mgJkg dose of SKF 86466 whereas no plasma DA was detected. ln order to determlne whether DA was present in noradrenergic nerve termlnals, the dopamine ß-hydroxylase Inhibitor SKF 1 02698 was administered (50 mgJkg i.p.). The Inhibitor decreased dialysate NE but DA was stin not detected in the dialysate. When SKF 86466 (5 mgJkg t.v.) was adminlstered 4 hr after SKF 102698, DA appeared in the dialysate but there was no lncrease in dialysate NE. Administration through the dialysis probe of the DA uptake Inhibitor, GBR-12909 (0.1 and 1 pM), dose-dependently lnaeased DA Ieveis to 5.7 ± 1.2 and 9.6 ± 2.8 pg/20 pl, respectively. GBR-12909 had no effect on hippocampal NE. Desipramine (5 and 10 pM) lncreased dose-dependently dialysate NE and lncreased DA concentrations to detectable Ieveis (2.7 ± 0.5 and 3.5 ± 0.7 pg/20 ,d, respectively). These results suggest that the a/pha-2 adrenoceptors modulate both NE and DA release in the rat hlppocampus and that DA detected in the hlppocampal dialysate might be released from dopaminergic neurons.}, subject = {Neurobiologie}, language = {en} } @article{VonhofSirenFeuerstein1990, author = {Vonhof, S. and Sir{\´e}n, Anna-Leena and Feuerstein, Giora}, title = {Volume-dependent spatial distribution of microinjected thyrotropin-releasing hormone (TRH) into the medial preoptic nucleus of the rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47421}, year = {1990}, abstract = {The present study was performed to qua ntify the distribution of a peptide neurotransmitter after microinjection into the medial preoptic area (POM), using a technique suitable for conscious animal preparations. The results indicate that only 50-ni volumes of injected tracer were sufficiently localized with 77 ± 9\% recovery in the POM. Injections of higher volumes resulted in an increasing spread of tracer into distant anatomical regions and structures, including the needle tract and cerebral ventricles. The amount of tracer localized in the POM decreased to 38±4\% (200 nl) (P < 0.05) and 41 ±8\% (500 nl) (P <0.05), respectively. The data suggest that the volume of injection is critical for intraparenchymal injections into structures of a diameter of I mm or less, such as the POM and should not exceed 50 nl in conscious animal preparations.}, subject = {Neurophysiologie}, language = {en} } @article{ShuaibXuCrainetal.1990, author = {Shuaib, A. and Xu, K. and Crain, B. and Sir{\´e}n, Anna-Leena and Feuerstein, Giora and Hallenbeck, J. and Davis, JN}, title = {Assessment of damage from implantation of microdialysis probes in the rat hippocampus with silver degeneration staining}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47433}, year = {1990}, abstract = {We used a sensitive silver degeneration staining method to study the effects of insertion of microdialysis probes in rat dorsal hippocampus and neocortex. Nine animals were sacrificed 24 h, 3 days or 7 days after implantation of dialysis tubing. Although mild neuronal cell death and small petechial hemorrhages were seen in elose proximity to the implantation site, the striking finding was the presence of degenerating axons both adjacent to the implantation site and in remote sites such as the corpus callosum and contralateral hippocampus. The observed changes could alter brain function near or remote from the implantation site and should be considered in analysis of dialysis experiments.}, subject = {Neurophysiologie}, language = {en} }