@article{MarkertBritzProppertetal.2016, author = {Markert, Sebastian Matthias and Britz, Sebastian and Proppert, Sven and Lang, Marietta and Witvliet, Daniel and Mulcahy, Ben and Sauer, Markus and Zhen, Mei and Bessereau, Jean-Louis and Stigloher, Christian}, title = {Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome}, series = {Neurophotonics}, volume = {3}, journal = {Neurophotonics}, number = {4}, doi = {10.1117/1.NPh.3.4.041802}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187292}, pages = {041802}, year = {2016}, abstract = {Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses.}, language = {en} } @article{KupperStigloherFeldhaaretal.2016, author = {Kupper, Maria and Stigloher, Christian and Feldhaar, Heike and Gross, Roy}, title = {Distribution of the obligate endosymbiont Blochmannia floridanus and expression analysis of putative immune genes in ovaries of the carpenter ant Camponotus floridanus}, series = {Arthropod Structure \& Development}, volume = {45}, journal = {Arthropod Structure \& Development}, number = {5}, doi = {10.1016/j.asd.2016.09.004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187482}, pages = {475-487}, year = {2016}, abstract = {The bacterial endosymbiont Blochmannia floridanus of the carpenter ant Camponotus floridanus contributes to its hosts' ontogeny via nutritional upgrading during metamorphosis. This primary endosymbiosis is essential for both partners and vertical transmission of the endosymbionts is guaranteed by bacterial infestation of oocytes. Here we present a detailed analysis of the presence and localisation of B. floridanus in the ants' ovaries obtained by FISH and TEM analyses. The most apical part of the germarium harbouring germ-line stem cells (GSCs) is not infected by the bacteria. The bacteria are detectable for the first time in lower parts of the germarium when cystocytes undergo the 4th and 5th division and B. floridanus infects somatic cells lying under the basal lamina surrounding the ovarioles. With the beginning of cystocyte differentiation, the endosymbionts are exclusively transported from follicle cells into the growing oocytes. This infestation of the oocytes by bacteria very likely involves exocytosis endocytosis processes between follicle cells and the oocytes. Nurse cells were never found to harbour the endosymbionts. Furthermore we present first gene expression data in C floridanus ovaries. These data indicate a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission.}, language = {en} } @article{JahnMarkertRyuetal.2016, author = {Jahn, Martin T. and Markert, Sebastian M. and Ryu, Taewoo and Ravasi, Timothy and Stigloher, Christian and Hentschel, Ute and Moitinho-Silva, Lucas}, title = {Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {35860}, doi = {10.1038/srep35860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167513}, year = {2016}, abstract = {Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.}, language = {en} }