@article{SweeneySeubertStarketal.2012, author = {Sweeney, Reinhart A. and Seubert, Benedikt and Stark, Silke and Homann, Vanessa and M{\"u}ller, Gerd and Flentje, Michael and Guckenbeger, Matthias}, title = {Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75698}, year = {2012}, abstract = {Background: To analyze the accuracy and inter-observer variability of image-guidance (IG) using 3D or 4D cone-beam CT (CBCT) technology in stereotactic body radiotherapy (SBRT) for lung tumors. Materials and methods: Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs) and three radiotherapy technicians (RTTs). Image-guidance using respiration correlated 4D-CBCT (IG-4D) with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1) manual registration of the planning internal target volume (ITV) contour and the motion blurred tumor in the 3D-CBCT (IG-ITV); 2) automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D). Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1-3, with 1 being best and 3 being worst quality for visual verification of the IGRT results. Results: Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 \% and 7.1 \% observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm± 0.9 mm (3D vector) on average using IG-ITV and by 3.6 mm± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was significantly larger in IG using 3D-CBCT compared to 4D-CBCT: 0.6 mm versus 1.5 mm (one standard deviation). Inter-observer variability was not different between the three ROs compared to the three RTTs. Conclusions: Respiration correlated 4D-CBCT improves the accuracy of image-guidance by more precise target localization in the presence of breathing induced target motion and by reduced inter-observer variability.}, subject = {Medizin}, language = {en} } @article{GuckenbergerRoeschBaieretal.2012, author = {Guckenberger, Matthias and Roesch, Johannes and Baier, Kurt and Sweeney, Reinhart A. and Flentje, Michael}, title = {Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75669}, year = {2012}, abstract = {Background: To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Methods and materials: Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and posttreatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Results: Errors prior to IG were 3.9 mm± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75\% ± 19\% and 60\% ± 25\% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6\% and 10\% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5\% in 14\% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. Conclusions: IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate safety margins.}, subject = {Medizin}, language = {en} } @article{KreisslHaenscheidLoehretal.2012, author = {Kreissl, Michael C. and H{\"a}nscheid, Heribert and L{\"o}hr, Mario and Verburg, Frederik A. and Schiller, Markus and Lassmann, Michael and Reiners, Christoph and Samnick, Samuel S. and Buck, Andreas K. and Flentje, Michael and Sweeney, Reinhart A.}, title = {Combination of peptide receptor radionuclide therapy with fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75540}, year = {2012}, abstract = {Background: External beam radiotherapy (EBRT) is the treatment of choice for irresectable meningioma. Due to the strong expression of somatostatin receptors, peptide receptor radionuclide therapy (PRRT) has been used in advanced cases. We assessed the feasibility and tolerability of a combination of both treatment modalities in advanced symptomatic meningioma. Methods: 10 patients with irresectable meningioma were treated with PRRT (177Lu-DOTA0,Tyr3 octreotate or - DOTA0,Tyr3 octreotide) followed by external beam radiotherapy (EBRT). EBRT performed after PRRT was continued over 5-6 weeks in IMRT technique (median dose: 53.0 Gy). All patients were assessed morphologically and by positron emission tomography (PET) before therapy and were restaged after 3-6 months. Side effects were evaluated according to CTCAE 4.0. Results: Median tumor dose achieved by PRRT was 7.2 Gy. During PRRT and EBRT, no side effects>CTCAE grade 2 were noted. All patients reported stabilization or improvement of tumor-associated symptoms, no morphologic tumor progression was observed in MR-imaging (median follow-up: 13.4 months). The median pre-therapeutic SUVmax in the meningiomas was 14.2 (range: 4.3-68.7). All patients with a second PET after combined PRRT + EBRT showed an increase in SUVmax (median: 37\%; range: 15\%-46\%) to a median value of 23.7 (range: 8.0-119.0; 7 patients) while PET-estimated volume generally decreased to 81 ± 21\% of the initial volume. Conclusions: The combination of PRRT and EBRT is feasible and well tolerated. This approach represents an attractive strategy for the treatment of recurring or progressive symptomatic meningioma, which should be further evaluated.}, subject = {Medizin}, language = {en} } @article{GuckenbergerHawkinsFlentjeetal.2012, author = {Guckenberger, Matthias and Hawkins, Maria and Flentje, Michael and Sweeney, Reinhart A.}, title = {Fractionated radiosurgery for painful spinal metastases: DOSIS - a phase II trial}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75853}, year = {2012}, abstract = {Background One third of all cancer patients will develop bone metastases and the vertebral column is involved in approximately 70 \% of these patients. Conventional radiotherapy with of 1-10 fractions and total doses of 8-30 Gy is the current standard for painful vertebral metastases; however, the median pain response is short with 3-6 months and local tumor control is limited with these rather low irradiation doses. Recent advances in radiotherapy technology - intensity modulated radiotherapy for generation of highly conformal dose distributions and image-guidance for precise treatment delivery - have made dose-escalated radiosurgery of spinal metastases possible and early results of pain and local tumor control are promising. The current study will investigate efficacy and safety of radiosurgery for painful vertebral metastases and three characteristics will distinguish this study. 1) A prognostic score for overall survival will be used for selection of patients with longer life expectancy to allow for analysis of long-term efficacy and safety. 2) Fractionated radiosurgery will be performed with the number of treatment fractions adjusted to either good (10 fractions) or intermediate (5 fractions) life expectancy. Fractionation will allow inclusion of tumors immediately abutting the spinal cord due to higher biological effective doses at the tumor - spinal cord interface compared to single fraction treatment. 3) Dose intensification will be performed in the involved parts of the vertebrae only, while uninvolved parts are treated with conventional doses using the simultaneous integrated boost concept. Methods / Design It is the study hypothesis that hypo-fractionated image-guided radiosurgery significantly improves pain relief compared to historic data of conventionally fractionated radiotherapy. Primary endpoint is pain response 3 months after radiosurgery, which is defined as pain reduction of ≥2 points at the treated vertebral site on the 0 to 10 Visual Analogue Scale. 60 patients will be included into this two-centre phase II trial. Conclusions Results of this study will refine the methods of patient selection, target volume definition, treatment planning and delivery as well as quality assurance for radiosurgery. It is the intention of this study to form the basis for a future randomized controlled trial comparing conventional radiotherapy with fractionated radiosurgery for palliation of painful vertebral metastases. Trial registration ClinicalTrials.gov Identifier: NCT01594892}, subject = {Medizin}, language = {en} }