@article{KoberRohnWeibeletal.2015, author = {Kober, Christina and Rohn, Susanne and Weibel, Stephanie and Geissinger, Ulrike and Chen, Nanhai G. and Szalay, Aladar A.}, title = {Microglia and astrocytes attenuate the replication of the oncolytic vaccinia virus LIVP 1.1.1 in murine GL261 gliomas by acting as vaccinia virus traps}, series = {Journal of Translational Medicine}, volume = {13}, journal = {Journal of Translational Medicine}, number = {216}, doi = {10.1186/s12967-015-0586-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126517}, year = {2015}, abstract = {Background Oncolytic virotherapy is a novel approach for the treatment of glioblastoma multiforme (GBM) which is still a fatal disease. Pathologic features of GBM are characterized by the infiltration with microglia/macrophages and a strong interaction between immune- and glioma cells. The aim of this study was to determine the role of microglia and astrocytes for oncolytic vaccinia virus (VACV) therapy of GBM. Methods VACV LIVP 1.1.1 replication in C57BL/6 and \(Foxn1^{nu/nu}\) mice with and without GL261 gliomas was analyzed. Furthermore, immunohistochemical analysis of microglia and astrocytes was investigated in non-, mock-, and LIVP 1.1.1-infected orthotopic GL261 gliomas in C57BL/6 mice. In cell culture studies virus replication and virus-mediated cell death of GL261 glioma cells was examined, as well as in BV-2 microglia and IMA2.1 astrocytes with M1 or M2 phenotypes. Co-culture experiments between BV-2 and GL261 cells and apoptosis/necrosis studies were performed. Organotypic slice cultures with implanted GL261 tumor spheres were used as additional cell culture system. Results We discovered that orthotopic GL261 gliomas upon intracranial virus delivery did not support replication of LIVP 1.1.1, similar to VACV-infected brains without gliomas. In addition, recruitment of \(Iba1^+\) microglia and \(GFAP^+\) astrocytes to orthotopically implanted GL261 glioma sites occurred already without virus injection. GL261 cells in culture showed high virus replication, while replication in BV-2 and IMA2.1 cells was barely detectable. The reduced viral replication in BV-2 cells might be due to rapid VACV-induced apoptotic cell death. In BV-2 and IMA 2.1 cells with M1 phenotype a further reduction of virus progeny and virus-mediated cell death was detected. Application of BV-2 microglial cells with M1 phenotype onto organotypic slice cultures with implanted GL261 gliomas resulted in reduced infection of BV-2 cells, whereas GL261 cells were well infected. Conclusion Our results indicate that microglia and astrocytes, dependent on their activation state, may preferentially clear viral particles by immediate uptake after delivery. By acting as VACV traps they further reduce efficient virus infection of the tumor cells. These findings demonstrate that glia cells need to be taken into account for successful GBM therapy development.}, language = {en} } @article{KirscherDeanBenScadengetal.2015, author = {Kirscher, Lorenz and De{\´a}n-Ben, Xos{\´e} Luis and Scadeng, Miriam and Zaremba, Angelika and Zhang, Qian and Kober, Christina and Fehm, Thomas Felix and Razansky, Daniel and Ntziachristos, Vasilis and Stritzker, Jochen and Szalay, Aladar A.}, title = {Doxycycline Inducible Melanogenic Vaccinia Virus as Theranostic Anti-Cancer Agent}, series = {Theranostics}, volume = {5}, journal = {Theranostics}, number = {10}, doi = {10.7150/thno.12533}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124987}, pages = {1045-1057}, year = {2015}, abstract = {We reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models. Furthermore, it was confirmed that this novel vaccinia virus strain still facilitated signal enhancement as detected by MRI and optoacoustic tomography. At the same time we demonstrated an enhanced oncolytic potential compared to the constitutively melanin synthesizing rVACV system.}, language = {en} } @article{AdelfingerBesslerCeciletal.2015, author = {Adelfinger, Marion and Bessler, Simon and Cecil, Alexander and Langbein-Laugwitz, Johanna and Frentzen, Alexa and Gentschev, Ivaylo and Szalay, Aladar A.}, title = {Preclinical Testing Oncolytic Vaccinia Virus Strain GLV-5b451 Expressing an Anti-VEGF Single-Chain Antibody for Canine Cancer Therapy}, series = {Viruses}, volume = {7}, journal = {Viruses}, doi = {10.3390/v7072811}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125705}, pages = {4075-4092}, year = {2015}, abstract = {Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a novel approach for canine cancer therapy. Here we describe, for the first time, the characterization and the use of VACV strain GLV-5b451 expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as therapeutic agent against different canine cancers. Cell culture data demonstrated that GLV-5b451 efficiently infected and destroyed all four tested canine cancer cell lines including: mammary carcinoma (MTH52c), mammary adenoma (ZMTH3), prostate carcinoma (CT1258), and soft tissue sarcoma (STSA-1). The GLV-5b451 virus-mediated production of GLAF-2 antibody was observed in all four cancer cell lines. In addition, this antibody specifically recognized canine VEGF. Finally, in canine soft tissue sarcoma (CSTS) xenografted mice, a single systemic administration of GLV-5b451 was found to be safe and led to anti-tumor effects resulting in the significant reduction and substantial long-term inhibition of tumor growth. A CD31-based immuno-staining showed significantly decreased neo-angiogenesis in GLV-5b451-treated tumors compared to the controls. In summary, these findings indicate that GLV-5b451 has potential for use as a therapeutic agent in the treatment of CSTS.}, language = {en} } @article{TsonevaStritzkerBedenketal.2015, author = {Tsoneva, Desislava and Stritzker, Jochen and Bedenk, Kristina and Zhang, Qian and Cappello, Joseph and Fischer, Utz and Szalay, Aladar A.}, title = {Drug-encoded Biomarkers for Monitoring Biological Therapies}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0137573}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125265}, pages = {e0137573}, year = {2015}, abstract = {Blood tests are necessary, easy-to-perform and low-cost alternatives for monitoring of oncolytic virotherapy and other biological therapies in translational research. Here we assessed three candidate proteins with the potential to be used as biomarkers in biological fluids: two glucuronidases from E. coli (GusA) and Staphylococcus sp. RLH1 (GusPlus), and the luciferase from Gaussia princeps (GLuc). The three genes encoding these proteins were inserted individually into vaccinia virus GLV-1h68 genome under the control of an identical promoter. The three resulting recombinant viruses were used to infect tumor cells in cultures and human tumor xenografts in nude mice. In contrast to the actively secreted GLuc, the cytoplasmic glucuronidases GusA and GusPlus were released into the supernatants only as a result of virus-mediated oncolysis. GusPlus resulted in the most sensitive detection of enzyme activity under controlled assay conditions in samples containing as little as 1 pg/ml of GusPlus, followed by GusA (25 pg/ml) and GLuc (≥375 pg/ml). Unexpectedly, even though GusA had a lower specific activity compared to GusPlus, the substrate conversion in the serum of tumor-bearing mice injected with the GusA-encoding virus strains was substantially higher than that of GusPlus. This was attributed to a 3.2 fold and 16.2 fold longer half-life of GusA in the blood stream compared to GusPlus and GLuc respectively, thus a more sensitive monitor of virus replication than the other two enzymes. Due to the good correlation between enzymatic activity of expressed marker gene and virus titer, we conclude that the amount of the biomarker protein in the body fluid semiquantitatively represents the amount of virus in the infected tumors which was confirmed by low light imaging. We found GusA to be the most reliable biomarker for monitoring oncolytic virotherapy among the three tested markers.}, language = {en} } @article{AdelfingerGentschevdeGuibertetal.2014, author = {Adelfinger, Marion and Gentschev, Ivaylo and de Guibert, Julio Grimm and Weibel, Stephanie and Langbein-Laugwitz, Johanna and H{\"a}rtl, Barbara and Escobar, Hugo Murua and Nolte, Ingo and Chen, Nanhai G. and Aguilar, Richard J. and Yu, Yong A. and Zhang, Qian and Frentzen, Alexa and Szalay, Aladar A.}, title = {Evaluation of a New Recombinant Oncolytic Vaccinia Virus Strain GLV-5b451 for Feline Mammary Carcinoma Therapy}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0104337}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119387}, pages = {e104337}, year = {2014}, abstract = {Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model.}, language = {en} } @article{GentschevPatilPetrovetal.2014, author = {Gentschev, Ivaylo and Patil, Sadeep S. and Petrov, Ivan and Cappello, Joseph and Adelfinger, Marion and Szalay, Aladar A.}, title = {Oncolytic Virotherapy of Canine and Feline Cancer}, series = {Viruses}, volume = {6}, journal = {Viruses}, number = {5}, doi = {10.3390/v6052122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119753}, pages = {2122-2137}, year = {2014}, abstract = {Cancer is the leading cause of disease-related death in companion animals such as dogs and cats. Despite recent progress in the diagnosis and treatment of advanced canine and feline cancer, overall patient treatment outcome has not been substantially improved. Virotherapy using oncolytic viruses is one promising new strategy for cancer therapy. Oncolytic viruses (OVs) preferentially infect and lyse cancer cells, without causing excessive damage to surrounding healthy tissue, and initiate tumor-specific immunity. The current review describes the use of different oncolytic viruses for cancer therapy and their application to canine and feline cancer.}, language = {en} } @article{HofmannWeibelSzalay2014, author = {Hofmann, Elisabeth and Weibel, Stephanie and Szalay, Aladar A.}, title = {Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice}, doi = {10.1186/1479-5876-12-197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110168}, year = {2014}, abstract = {Background The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. Methods PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. Results GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. Conclusions CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the enhanced tumor growth inhibition achieved by combining GLV-1h68 with CPA is due to an effect on the vasculature rather than an immunosuppressive action of CPA. These results provide evidence to support further preclinical studies of combining GLV-1h68 and CPA in other highly angiogenic tumor models. Moreover, data presented here demonstrate that CPA can be combined successfully with GLV-1h68 based oncolytic virus therapy and therefore might be promising as combination therapy in human clinical trials.}, language = {en} } @article{GholamiChenBelinetal.2013, author = {Gholami, Sepideh and Chen, Chun-Hao and Belin, Laurence J. and Lou, Emil and Fujisawa, Sho and Antonacci, Caroline and Carew, Amanda and Chen, Nanhai G. and De Brot, Marina and Zanzonico, Pat B. and Szalay, Aladar A. and Fong, Yuman}, title = {Vaccinia virus GLV-1h153 is a novel agent for detection and effective local control of positive surgical margins for breast cancer}, series = {Breast Cancer Research}, volume = {15}, journal = {Breast Cancer Research}, number = {R26}, doi = {10.1186/bcr3404}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122140}, year = {2013}, abstract = {Introduction: Surgery is currently the definitive treatment for early-stage breast cancer. However, the rate of positive surgical margins remains unacceptably high. The human sodium iodide symporter (hNIS) is a naturally occurring protein in human thyroid tissue, which enables cells to concentrate radionuclides. The hNIS has been exploited to image and treat thyroid cancer. We therefore investigated the potential of a novel oncolytic vaccinia virus GLV1h-153 engineered to express the hNIS gene for identifying positive surgical margins after tumor resection via positron emission tomography (PET). Furthermore, we studied its role as an adjuvant therapeutic agent in achieving local control of remaining tumors in an orthotopic breast cancer model. Methods: GLV-1h153, a replication-competent vaccinia virus, was tested against breast cancer cell lines at various multiplicities of infection (MOIs). Cytotoxicity and viral replication were determined. Mammary fat pad tumors were generated in athymic nude mice. To determine the utility of GLV-1h153 in identifying positive surgical margins, 90\% of the mammary fat pad tumors were surgically resected and subsequently injected with GLV-1h153 or phosphate buffered saline (PBS) in the surgical wound. Serial Focus 120 microPET images were obtained six hours post-tail vein injection of approximately 600 mu Ci of I-124-iodide. Results: Viral infectivity, measured by green fluorescent protein (GFP) expression, was time-and concentrationdependent. All cell lines showed less than 10\% of cell survival five days after treatment at an MOI of 5. GLV-1h153 replicated efficiently in all cell lines with a peak titer of 27 million viral plaque forming units (PFU) ( < 10,000-fold increase from the initial viral dose) by Day 4. Administration of GLV-1h153 into the surgical wound allowed positive surgical margins to be identified via PET scanning. In vivo, mean volume of infected surgically resected residual tumors four weeks after treatment was 14 mm(3) versus 168 mm(3) in untreated controls (P < 0.05). Conclusions: This is the first study to our knowledge to demonstrate a novel vaccinia virus carrying hNIS as an imaging tool in identifying positive surgical margins of breast cancers in an orthotopic murine model. Moreover, our results suggest that GLV-1h153 is a promising therapeutic agent in achieving local control for positive surgical margins in resected breast tumors.}, language = {en} } @article{WeibelBasseLuesebrinkHessetal.2013, author = {Weibel, Stephanie and Basse-Luesebrink, Thomas Christian and Hess, Michael and Hofmann, Elisabeth and Seubert, Carolin and Langbein-Laugwitz, Johanna and Gentschev, Ivaylo and Sturm, Volker J{\"o}rg Friedrich and Ye, Yuxiang and Kampf, Thomas and Jakob, Peter Michael and Szalay, Aladar A.}, title = {Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by \(^{19}\)F-Magnetic Resonance Imaging (MRI)}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0056317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130311}, pages = {e56317}, year = {2013}, abstract = {Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate \(^{19}\)F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by \(^1H\)/\(^{19}\)F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the \(^{19}\)F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the \(^{19}\)F signal hot spots and \(CD68^+\)-macrophages. Thereby, the \(CD68^+\)-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the \(^{19}\)F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest \(^{19}\)F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, \(^{19}\)F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response.}, language = {en} } @article{EhrigKilincChenetal.2013, author = {Ehrig, Klaas and Kilinc, Mehmet O. and Chen, Nanhai G. and Stritzker, Jochen and Buckel, Lisa and Zhang, Qian and Szalay, Aladar A.}, title = {Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68}, series = {Journal of Translational Medicine}, volume = {11}, journal = {Journal of Translational Medicine}, number = {79}, doi = {10.1186/1479-5876-11-79}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129619}, year = {2013}, abstract = {Background: Despite availability of efficient treatment regimens for early stage colorectal cancer, treatment regimens for late stage colorectal cancer are generally not effective and thus need improvement. Oncolytic virotherapy using replication-competent vaccinia virus (VACV) strains is a promising new strategy for therapy of a variety of human cancers. Methods: Oncolytic efficacy of replication-competent vaccinia virus GLV-1h68 was analyzed in both, cell cultures and subcutaneous xenograft tumor models. Results: In this study we demonstrated for the first time that the replication-competent recombinant VACV GLV-1h68 efficiently infected, replicated in, and subsequently lysed various human colorectal cancer lines (Colo 205, HCT-15, HCT-116, HT-29, and SW-620) derived from patients at all four stages of disease. Additionally, in tumor xenograft models in athymic nude mice, a single injection of intravenously administered GLV-1h68 significantly inhibited tumor growth of two different human colorectal cell line tumors (Duke's type A-stage HCT-116 and Duke's type C-stage SW-620), significantly improving survival compared to untreated mice. Expression of the viral marker gene ruc-gfp allowed for real-time analysis of the virus infection in cell cultures and in mice. GLV-1h68 treatment was well-tolerated in all animals and viral replication was confined to the tumor. GLV-1h68 treatment elicited a significant up-regulation of murine immune-related antigens like IFN-γ, IP-10, MCP-1, MCP-3, MCP-5, RANTES and TNF-γ and a greater infiltration of macrophages and NK cells in tumors as compared to untreated controls. Conclusion: The anti-tumor activity observed against colorectal cancer cells in these studies was a result of direct viral oncolysis by GLV-1h68 and inflammation-mediated innate immune responses. The therapeutic effects occurred in tumors regardless of the stage of disease from which the cells were derived. Thus, the recombinant vaccinia virus GLV-1h68 has the potential to treat colorectal cancers independently of the stage of progression.}, language = {en} } @article{DuggalGeissingerZhangetal.2013, author = {Duggal, Rohit and Geissinger, Ulrike and Zhang, Qian and Aguilar, Jason and Chen, Nanhai G. and Binda, Elena and Vescovi, Angelo L. and Szalay, Aladar A.}, title = {Vaccinia virus expressing bone morphogenetic protein-4 in novel glioblastoma orthotopic models facilitates enhanced tumor regression and long-term survival}, series = {Journal of Translational Medicine}, volume = {11}, journal = {Journal of Translational Medicine}, number = {155}, doi = {10.1186/1479-5876-11-155}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129626}, year = {2013}, abstract = {No abstract availableBackground: Glioblastoma multiforme (GBM) is one of the most aggressive forms of cancer with a high rate of recurrence. We propose a novel oncolytic vaccinia virus (VACV)-based therapy using expression of the bone morphogenetic protein (BMP)-4 for treating GBM and preventing recurrence. Methods: We have utilized clinically relevant, orthotopic xenograft models of GBM based on tumor-biopsy derived, primary cancer stem cell (CSC) lines. One of the cell lines, after being transduced with a cDNA encoding firefly luciferase, could be used for real time tumor imaging. A VACV that expresses BMP-4 was constructed and utilized for infecting several primary glioma cultures besides conventional serum-grown glioma cell lines. This virus was also delivered intracranially upon implantation of the GBM CSCs in mice to determine effects on tumor growth. Results: We found that the VACV that overexpresses BMP-4 demonstrated heightened replication and cytotoxic activity in GBM CSC cultures with a broad spectrum of activity across several different patient-biopsy cultures. Intracranial inoculation of mice with this virus resulted in a tumor size equal to or below that at the time of injection. This resulted in survival of 100\% of the treated mice up to 84 days post inoculation, significantly superior to that of a VACV lacking BMP-4 expression. When mice with a higher tumor burden were injected with the VACV lacking BMP-4, 80\% of the mice showed tumor recurrence. In contrast, no recurrence was seen when mice were injected with the VACV expressing BMP-4, possibly due to induction of differentiation in the CSC population and subsequently serving as a better host for VACV infection and oncolysis. This lack of recurrence resulted in superior survival in the BMP-4 VACV treated group. Conclusions: Based on these findings we propose a novel VACV therapy for treating GBM, which would allow tumor specific production of drugs in the future in combination with BMPs which would simultaneously control tumor maintenance and facilitate CSC differentiation, respectively, thereby causing sustained tumor regression without recurrence.}, language = {en} } @article{WangChenMinevetal.2013, author = {Wang, Huiqiang and Chen, Nanhai G. and Minev, Boris R. and Zimmermann, Martina and Aguilar, Richard J. and Zhang, Qian and Sturm, Julia B. and Fend, Falko and Yu, Yong A. and Cappello, Joseph and Lauer, Ulrich M. and Szalay, Aladar A.}, title = {Optical Detection and Virotherapy of Live Metastatic Tumor Cells in Body Fluids with Vaccinia Strains}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {9}, doi = {10.1371/journal.pone.0071105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130059}, pages = {e71105}, year = {2013}, abstract = {Metastatic tumor cells in body fluids are important targets for treatment, and critical surrogate markers for evaluating cancer prognosis and therapeutic response. Here we report, for the first time, that live metastatic tumor cells in blood samples from mice bearing human tumor xenografts and in blood and cerebrospinal fluid samples from patients with cancer were successfully detected using a tumor cell-specific recombinant vaccinia virus (VACV). In contrast to the FDA-approved CellSearch system, VACV detects circulating tumor cells (CTCs) in a cancer biomarker-independent manner, thus, free of any bias related to the use of antibodies, and can be potentially a universal system for detection of live CTCs of any tumor type, not limited to CTCs of epithelial origin. Furthermore, we demonstrate for the first time that VACV was effective in preventing and reducing circulating tumor cells in mice bearing human tumor xenografts. Importantly, a single intra-peritoneal delivery of VACV resulted in a dramatic decline in the number of tumor cells in the ascitic fluid from a patient with gastric cancer. Taken together, these results suggest VACV to be a useful tool for quantitative detection of live tumor cells in liquid biopsies as well as a potentially effective treatment for reducing or eliminating live tumor cells in body fluids of patients with metastatic disease.}, language = {en} } @article{SzalayWeibelHofmannetal.2013, author = {Szalay, Aladar A and Weibel, Stephanie and Hofmann, Elisabeth and Basse-Luesebrink, Thomas Christian and Donat, Ulrike and Seubert, Carolin and Adelfinger, Marion and Gnamlin, Prisca and Kober, Christina and Frentzen, Alexa and Gentschev, Ivaylo and Jakob, Peter Michael}, title = {Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer}, series = {Journal of Translational Medicine}, journal = {Journal of Translational Medicine}, doi = {doi:10.1186/1479-5876-11-106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96016}, year = {2013}, abstract = {Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer.}, subject = {Lungenkrebs}, language = {en} } @article{SchaeferWeibelDonatetal.2012, author = {Sch{\"a}fer, Simon and Weibel, Stephanie and Donat, Ulrike and Zhang, Quian and Aguilar, Richard J. and Chen, Nanhai G. and Szalay, Aladar A.}, title = {Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors}, series = {BMC Cancer}, volume = {12}, journal = {BMC Cancer}, number = {366}, doi = {10.1186/1471-2407-12-366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140800}, year = {2012}, abstract = {Background Oncolytic viruses, including vaccinia virus (VACV), are a promising alternative to classical mono-cancer treatment methods such as surgery, chemo- or radiotherapy. However, combined therapeutic modalities may be more effective than mono-therapies. In this study, we enhanced the effectiveness of oncolytic virotherapy by matrix metalloproteinase (MMP-9)-mediated degradation of proteins of the tumoral extracellular matrix (ECM), leading to increased viral distribution within the tumors. Methods For this study, the oncolytic vaccinia virus GLV-1h255, containing the mmp-9 gene, was constructed and used to treat PC-3 tumor-bearing mice, achieving an intra-tumoral over-expression of MMP-9. The intra-tumoral MMP-9 content was quantified by immunohistochemistry in tumor sections. Therapeutic efficacy of GLV-1h255 was evaluated by monitoring tumor growth kinetics and intra-tumoral virus titers. Microenvironmental changes mediated by the intra-tumoral MMP-9 over-expression were investigated by microscopic quantification of the collagen IV content, the blood vessel density (BVD) and the analysis of lymph node metastasis formation. Results GLV-1h255-treatment of PC-3 tumors led to a significant over-expression of intra-tumoral MMP-9, accompanied by a marked decrease in collagen IV content in infected tumor areas, when compared to GLV-1h68-infected tumor areas. This led to considerably elevated virus titers in GLV-1h255 infected tumors, and to enhanced tumor regression. The analysis of the BVD, as well as the lumbar and renal lymph node volumes, revealed lower BVD and significantly smaller lymph nodes in both GLV-1h68- and GLV-1h255- injected mice compared to those injected with PBS, indicating that MMP-9 over-expression does not alter the metastasis-reducing effect of oncolytic VACV. Conclusions Taken together, these results indicate that a GLV-1h255-mediated intra-tumoral over-expression of MMP-9 leads to a degradation of collagen IV, facilitating intra-tumoral viral dissemination, and resulting in accelerated tumor regression. We propose that approaches which enhance the oncolytic effect by increasing the intra-tumoral viral load, may be an effective way to improve therapeutic outcome.}, language = {en} } @article{SturmHessWeibeletal.2012, author = {Sturm, Julia B. and Hess, Michael and Weibel, Stephanie and Chen, Nanhei G. and Yu, Yong A. and Zhang, Quian and Donat, Ulrike and Reiss, Cora and Gambaryan, Stepan and Krohne, Georg and Stritzker, Jochen and Szalay, Aladar A.}, title = {Functional hyper-IL-6 from vaccinia virus-colonized tumors triggers platelet formation and helps to alleviate toxicity of mitomycin C enhanced virus therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75224}, year = {2012}, abstract = {Background: Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic. Methods: Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects. Results: We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia. Conclusion: Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects.}, subject = {Biologie}, language = {en} } @article{PatilGentschevNolteetal.2012, author = {Patil, Sandeep S. and Gentschev, Ivaylo and Nolte, Ingo and Ogilvie, Gregory and Szalay, Aladar A.}, title = {Oncolytic virotherapy in veterinary medicine: current status and future prospects for canine patients}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75128}, year = {2012}, abstract = {Oncolytic viruses refer to those that are able to eliminate malignancies by direct targeting and lysis of cancer cells, leaving non-cancerous tissues unharmed. Several oncolytic viruses including adenovirus strains, canine distemper virus and vaccinia virus strains have been used for canine cancer therapy in preclinical studies. However, in contrast to human studies, clinical trials with oncolytic viruses for canine cancer patients have not been reported. An 'ideal' virus has yet to be identified. This review is focused on the prospective use of oncolytic viruses in the treatment of canine tumors - a knowledge that will undoubtedly contribute to the development of oncolytic viral agents for canine cancer therapy in the future.}, subject = {Medizin}, language = {en} } @article{WangChenMinevetal.2012, author = {Wang, Huiqiang and Chen, Nanhai G. and Minev, Boris R. and Szalay, Aladar A.}, title = {Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells}, series = {Journal of Translational Medicine}, volume = {10}, journal = {Journal of Translational Medicine}, number = {167}, doi = {10.1186/1479-5876-10-167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130019}, year = {2012}, abstract = {Background: Recent data suggest that cancer stem cells (CSCs) play an important role in cancer, as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence, novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. Methods: Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance, irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover, we identified and isolated CD44\(^+\)CD24\(^+\)ESA\(^+\) cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. Results: We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore, GLV-1h68 also showed preferential replication in CD44\(^+\)CD24\(^+\)ESA\(^+\) cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44\(^+\)CD24\(^-\)ESA\(^+\) cells. Conclusions: Taken together, our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus, GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors, especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors.}, language = {en} } @article{PatilGentschevAdelfingeretal.2012, author = {Patil, Sandeep S. and Gentschev, Ivaylo and Adelfinger, Marion and Donat, Ulrike and Hess, Michael and Weibel, Stephanie and Nolte, Ingo and Frentzen, Alexa and Szalay, Aladar A.}, title = {Virotherapy of Canine Tumors with Oncolytic Vaccinia Virus GLV-1h109 Expressing an Anti-VEGF Single-Chain Antibody}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0047472}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130039}, pages = {e47472}, year = {2012}, abstract = {Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for cancer therapy. We have previously reported that oncolytic vaccinia virus strains expressing an anti-VEGF (Vascular Endothelial Growth Factor) single-chain antibody (scAb) GLAF-1 exhibited significant therapeutic efficacy for treatment of human tumor xenografts. Here, we describe the use of oncolytic vaccinia virus GLV-1h109 encoding GLAF-1 for canine cancer therapy. In this study we analyzed the virus-mediated delivery and production of scAb GLAF-1 and the oncolytic and immunological effects of the GLV-1h109 vaccinia virus strain against canine soft tissue sarcoma and canine prostate carcinoma in xenograft models. Cell culture data demonstrated that the GLV-1h109 virus efficiently infect, replicate in and destroy both tested canine cancer cell lines. In addition, successful expression of GLAF-1 was demonstrated in virus-infected canine cancer cells and the antibody specifically recognized canine VEGF. In two different xenograft models, the systemic administration of the GLV-1h109 virus was found to be safe and led to anti-tumor and immunological effects resulting in the significant reduction of tumor growth in comparison to untreated control mice. Furthermore, tumor-specific virus infection led to a continued production of functional scAb GLAF-1, resulting in inhibition of angiogenesis. Overall, the GLV-1h109-mediated cancer therapy and production of immunotherapeutic anti-VEGF scAb may open the way for combination therapy concept i.e. vaccinia virus mediated oncolysis and intratumoral production of therapeutic drugs in canine cancer patients.}, language = {en} } @article{HaddadChenCarlinetal.2012, author = {Haddad, Dana and Chen, Chun-Hao and Carlin, Sean and Silberhumer, Gerd and Chen, Nanhai G. and Zhang, Qian and Longo, Valerie and Carpenter, Susanne G. and Mittra, Arjun and Carson, Joshua and Au, Joyce and Gonen, Mithat and Zanzonico, Pat B. and Szalay, Aladar A. and Fong, Yuman}, title = {Imaging Characteristics, Tissue Distribution, and Spread of a Novel Oncolytic Vaccinia Virus Carrying the Human Sodium Iodide Symporter}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0041647}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130041}, pages = {e41647}, year = {2012}, abstract = {Introduction: Oncolytic viruses show promise for treating cancer. However, to assess therapy and potential toxicity, a noninvasive imaging modality is needed. This study aims to determine the in vivo biodistribution, and imaging and timing characteristics of a vaccinia virus, GLV-1h153, encoding the human sodium iodide symporter (hNIS. Methods: GLV-1h153 was modified from GLV-1h68 to encode the hNIS gene. Timing of cellular uptake of radioiodide \(^{131}\)I in human pancreatic carcinoma cells PANC-1 was assessed using radiouptake assays. Viral biodistribution was determined in nude mice bearing PANC-1 xenografts, and infection in tumors confirmed histologically and optically via Green Fluorescent Protein (GFP) and bioluminescence. Timing characteristics of enhanced radiouptake in xenografts were assessed via \(^{124}\)I-positron emission tomography (PET). Detection of systemic administration of virus was investigated with both \(^{124}\)I-PET and 99m-technecium gamma-scintigraphy. Results: GLV-1h153 successfully facilitated time-dependent intracellular uptake of \(^{131}\)I in PANC-1 cells with a maximum uptake at 24 hours postinfection (P < 0.05). In vivo, biodistribution profiles revealed persistence of virus in tumors 5 weeks postinjection at 10\(^9\) plaque-forming unit (PFU)/gm tissue, with the virus mainly cleared from all other major organs. Tumor infection by GLV-1h153 was confirmed via optical imaging and histology. GLV-1h153 facilitated imaging virus replication in tumors via PET even at 8 hours post radiotracer injection, with a mean \% ID/gm of 3.82 \(\pm\) 60.46 (P < 0.05) 2 days after intratumoral administration of virus, confirmed via tissue radiouptake assays. One week post systemic administration, GLV1h153-infected tumors were detected via \(^{124}\)I-PET and 99m-technecium-scintigraphy. Conclusion: GLV-1h153 is a promising oncolytic agent against pancreatic cancer with a promising biosafety profile. GLV-1h153 facilitated time-dependent hNIS-specific radiouptake in pancreatic cancer cells, facilitating detection by PET with both intratumoral and systemic administration. Therefore, GLV-1h153 is a promising candidate for the noninvasive imaging of virotherapy and warrants further study into longterm monitoring of virotherapy and potential radiocombination therapies with this treatment and imaging modality.}, language = {en} } @article{GentschevAdelfingerJosupeitetal.2012, author = {Gentschev, Ivaylo and Adelfinger, Marion and Josupeit, Rafael and Rudolph, Stephan and Ehrig, Klaas and Donat, Ulrike and Weibel, Stephanie and Chen, Nanhai G. and Yu, Yong A. and Zhang, Qian and Heisig, Martin and Thamm, Douglas and Stritzker, Jochen and MacNeill, Amy and Szalay, Aladar A.}, title = {Preclinical Evaluation of Oncolytic Vaccinia Virus for Therapy of Canine Soft Tissue Sarcoma}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {5}, doi = {10.1371/journal.pone.0037239}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129998}, year = {2012}, abstract = {Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.}, language = {en} }