@unpublished{EnglertStoyArrowsmithetal.2019, author = {Englert, Lukas and Stoy, Andreas and Arrowsmith, Merle and M{\"u}ssig, Jonas H. and Thaler, Melanie and Deißenberger, Andrea and H{\"a}fner, Alena and B{\"o}hnke, Julian and Hupp, Florian and Seufert, Jens and Mies, Jan and Damme, Alexander and Dellermann, Theresa and Hammond, Kai and Kupfer, Thomas and Radacki, Krzysztof and Thiess, Torsten and Braunschweig, Holger}, title = {Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity}, series = {Chemistry - A European Journal}, journal = {Chemistry - A European Journal}, doi = {10.1002/chem.201901437}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184888}, year = {2019}, abstract = {A series of 22 new bis(phosphine), bis(carbene) and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X = Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X = Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopic, (C,H,N)- elemental and, for 20 of these compounds, X-ray crystallographic analysis, revealing an unexpected variation in the bonding motifs. Besides the classical B2X4L2 diborane(6) adducts, some of the more sterically demanding carbene ligands induce a halide displacement leading to the first halide-bridged monocationic diboron species, [B2X3L2]A (A = BCl4, Br, I). Furthermore, low-temperature 1:1 reactions of B2Cl4 with sterically demanding N-heterocyclic carbenes led to the formation of kinetically unstable mono-adducts, one of which was structurally characterized. A comparison of the NMR and structural data of new and literature-known bis-adducts shows several trends pertaining to the nature of the halides and the stereoelectronic properties of the Lewis bases employed.}, language = {en} } @unpublished{StoyBoehnkeJiménezHallaetal.2018, author = {Stoy, Andreas and B{\"o}hnke, Julian and Jiménez-Halla, J. Oscar C. and Dewhurst, Rian D. and Thiess, Torsten and Braunschweig, Holger}, title = {CO\(_2\) Binding and Splitting by Boron-Boron Multiple Bonds}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201802117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164265}, year = {2018}, abstract = {CO\(_2\) is found to undergo room-temperature, ambient- pressure reactions with two species containing boron-boron multiple bonds, leading to incorporation of either one or two CO\(_2\) molecules. In one case, a thermally-unstable intermediate was structurally characterized, indicating the operation of an initial 2+2 cycloaddition mechanism in the reaction.}, language = {en} } @unpublished{BraunschweigBruecknerDeissenbergeretal.2017, author = {Braunschweig, Holger and Br{\"u}ckner, Tobias and Deißenberger, Andrea and Dewhurst, Rian and Gackstatter, Annika and G{\"a}rtner, Annalena and Hofmann, Alexander and Kupfer, Thomas and Prieschl, Dominic and Thiess, Torsten and Wang, Sunewang Rixin}, title = {Reaction of Dihalodiboranes(4) with N-Heterocyclic Silylenes: Facile Construction of 1-Aryl-2-Silyl-1,2-Diboraindanes}, series = {Chemistry, A European Journal}, journal = {Chemistry, A European Journal}, doi = {10.1002/chem.201702377}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153068}, year = {2017}, abstract = {Dihalodiboranes(4) react with an N-heterocyclic silylene (NHSi) to generate NHSi-adducts of 1-aryl-2-silyl-1,2-diboraindanes as confirmed by X-ray crystallography, featuring the functionalization of both B-X (X = halogen) bonds and a C-H bond under mild conditions. Coordination of a third NHSi to the proposed 1,1-diaryl- 2,2-disilyldiborane(4) intermediates, generated by a two-fold B-X insertion, may be crucial for the C-H borylation that leads to the final products. Notably, our results demonstrate the first C-H borylation with a strong B-F bond activated by silylene insertion.}, language = {en} } @unpublished{WangArrowsmithBoehnkeetal.2017, author = {Wang, Sunewang R. and Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Dellermann, Theresa and Dewhurst, Rian D. and Kelch, Hauke and Krummenacher, Ivo and Mattock, James D. and M{\"u}ssig, Jonas H. and Thiess, Torsten and Vargas, Alfredo and Zhang, Jiji}, title = {Engineering a Small HOMO-LUMO Gap and Intramolecular B-B Hydroarylation by Diborene/Anthracene Orbital Intercalation}, series = {Angewandte Chemie, International Edition}, volume = {56}, journal = {Angewandte Chemie, International Edition}, number = {27}, doi = {10.1002/anie.201704063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148126}, pages = {8009-8013}, year = {2017}, abstract = {The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) (6) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C\(_{14}\)) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO-LUMO gap (HLG) and ultimately an unprecedented anthryl B-B bond hydroarylation. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV-vis absorption spectrum (THF, λ\(_{onset}\) = 788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B-B and C\(^1\)-H bonds of 8 were cleaved to give the cyclic 1,9-diboraanthracene 9.}, language = {en} }