@article{OostingaMaierSchueffelgenetal.2013, author = {Oostinga, Jeroen B. and Maier, Luis and Sch{\"u}ffelgen, Peter and Knott, Daniel and Ames, Christopher and Br{\"u}ne, Christoph and Tkachov, Grigory and Buhmann, Hartmut and Molenkamp, Laurens W.}, title = {Josephson Supercurrent through the Topological Surface States of Strained Bulk HgTe}, series = {Physical Review X}, volume = {3}, journal = {Physical Review X}, number = {021007}, doi = {10.1103/PhysRevX.3.021007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129834}, year = {2013}, abstract = {Strained bulk HgTe is a three-dimensional topological insulator, whose surface electrons have a high mobility (~ 30 000 cm\(^2\)=Vs), while its bulk is effectively free of mobile charge carriers. These properties enable a study of transport through its unconventional surface states without being hindered by a parallel bulk conductance. Here, we show transport experiments on HgTe-based Josephson junctions to investigate the appearance of the predicted Majorana states at the interface between a topological insulator and a superconductor. Interestingly, we observe a dissipationless supercurrent flow through the topological surface states of HgTe. The current-voltage characteristics are hysteretic at temperatures below 1 K, with critical supercurrents of several microamperes. Moreover, we observe a magnetic-field-induced Fraunhofer pattern of the critical supercurrent, indicating a dominant \(2\pi\)-periodic Josephson effect in the unconventional surface states. Our results show that strained bulk HgTe is a promising material system to get a better understanding of the Josephson effect in topological surface states, and to search for the manifestation of zero-energy Majorana states in transport experiments.}, language = {en} }