@article{BenzMerkelOffneretal.2013, author = {Benz, Peter M. and Merkel, Carla J. and Offner, Kristin and Abeßer, Marco and Ullrich, Melanie and Fischer, Tobias and Bayer, Barbara and Wagner, Helga and Gambaryan, Stepan and Ursitti, Jeanine A. and Adham, Ibrahim M. and Linke, Wolfgang A. and Feller, Stephan M. and Fleming, Ingrid and Renn{\´e}, Thomas and Frantz, Stefan and Unger, Andreas and Schuh, Kai}, title = {Mena/VASP and alphaII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy}, series = {Cell Communication and Signaling}, volume = {11}, journal = {Cell Communication and Signaling}, number = {56}, doi = {10.1186/1478-811X-11-56}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128760}, year = {2013}, abstract = {Background: In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. Results: We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. Conclusions: Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities.}, language = {en} } @article{HepbasliGredyUllrichetal.2021, author = {Hepbasli, Denis and Gredy, Sina and Ullrich, Melanie and Reigl, Amelie and Abeßer, Marco and Raabe, Thomas and Schuh, Kai}, title = {Genotype- and Age-Dependent Differences in Ultrasound Vocalizations of SPRED2 Mutant Mice Revealed by Machine Deep Learning}, series = {Brain Sciences}, volume = {11}, journal = {Brain Sciences}, number = {10}, issn = {2076-3425}, doi = {10.3390/brainsci11101365}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248525}, year = {2021}, abstract = {Vocalization is an important part of social communication, not only for humans but also for mice. Here, we show in a mouse model that functional deficiency of Sprouty-related EVH1 domain-containing 2 (SPRED2), a protein ubiquitously expressed in the brain, causes differences in social ultrasound vocalizations (USVs), using an uncomplicated and reliable experimental setting of a short meeting of two individuals. SPRED2 mutant mice show an OCD-like behaviour, accompanied by an increased release of stress hormones from the hypothalamic-pituitary-adrenal axis, both factors probably influencing USV usage. To determine genotype-related differences in USV usage, we analyzed call rate, subtype profile, and acoustic parameters (i.e., duration, bandwidth, and mean peak frequency) in young and old SPRED2-KO mice. We recorded USVs of interacting male and female mice, and analyzed the calls with the deep-learning DeepSqueak software, which was trained to recognize and categorize the emitted USVs. Our findings provide the first classification of SPRED2-KO vs. wild-type mouse USVs using neural networks and reveal significant differences in their development and use of calls. Our results show, first, that simple experimental settings in combination with deep learning are successful at identifying genotype-dependent USV usage and, second, that SPRED2 deficiency negatively affects the vocalization usage and social communication of mice.}, language = {en} }