@article{WalitzaMelfsenJansetal.2011, author = {Walitza, Susanne and Melfsen, Siebke and Jans, Thomas and Zellmann, Henrike and Wewetzer, Christoph and Warnke, Andreas}, title = {Obsessive-Compulsive Disorder in Children and Adolescents}, series = {Deutsches {\"A}rzteblatt International}, volume = {108}, journal = {Deutsches {\"A}rzteblatt International}, number = {11}, doi = {10.3238/arztebl.2011.0173}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141214}, pages = {173-I}, year = {2011}, abstract = {Background: Early-onset obsessive-compulsive disorder (OCD) is one of the more common mental illnesses of children and adolescents, with prevalence of 1\% to 3\%. Its manifestations often lead to severe impairment and to conflict in the family. In this review, we summarize the manifestations, comorbidity, pathophysiology, and course of this disease as well as current modes of diagnosis and treatment. Methods: We selectively review the relevant literature and the German-language guidelines for the diagnosis and treatment of mental illnesses in children and adolescents. Results: Obsessive-compulsive manifestations are of many types and cause severe impairment. Comorbid mental disturbances are present in as many as 70\% of patients. The disease takes a chronic course in more than 40\% of patients. Cognitive behavioral therapy is the treatment of first choice, followed by combination pharmacotherapy including selective serotonin reuptake inhibitors (SSRI) and then by SSRI alone. Conclusion: OCD often begins in childhood or adolescence. There are empirically based neurobiological and cognitive-behavioral models of its pathophysiology. Multiaxial diagnostic evaluation permits early diagnosis. Behavioral therapy and medications are highly effective treatments, but the disorder nonetheless takes a chronic course in a large percentage of patients.}, language = {en} } @article{BremGruenblattDrechsleretal.2014, author = {Brem, Silvia and Gr{\"u}nblatt, Edna and Drechsler, Renate and Riederer, Peter and Walitza, Susanne}, title = {The neurobiological link between OCD and ADHD}, series = {Attention Deficit and Hyperactivity Disorders}, volume = {6}, journal = {Attention Deficit and Hyperactivity Disorders}, number = {3}, doi = {10.1007/s12402-014-0146-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121312}, pages = {175-202}, year = {2014}, abstract = {Obsessive compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD) are two of the most common neuropsychiatric diseases in paediatric populations. The high comorbidity of ADHD and OCD with each other, especially of ADHD in paediatric OCD, is well described. OCD and ADHD often follow a chronic course with persistent rates of at least 40-50 \%. Family studies showed high heritability in ADHD and OCD, and some genetic findings showed similar variants for both disorders of the same pathogenetic mechanisms, whereas other genetic findings may differentiate between ADHD and OCD. Neuropsychological and neuroimaging studies suggest that partly similar executive functions are affected in both disorders. The deficits in the corresponding brain networks may be responsible for the perseverative, compulsive symptoms in OCD but also for the disinhibited and impulsive symptoms characterizing ADHD. This article reviews the current literature of neuroimaging, neurochemical circuitry, neuropsychological and genetic findings considering similarities as well as differences between OCD and ADHD.}, language = {en} } @article{DavisYuKeenanetal.2013, author = {Davis, Lea K. and Yu, Dongmei and Keenan, Clare L. and Gamazon, Eric R. and Konkashbaev, Anuar I. and Derks, Eske M. and Neale, Benjamin M. and Yang, Jian and Lee, S. Hong and Evans, Patrick and Barr, Cathy L. and Bellodi, Laura and Benarroch, Fortu and Berrio, Gabriel Bedoya and Bienvenu, Oscar J. and Bloch, Michael H. and Blom, Rianne M. and Bruun, Ruth D. and Budman, Cathy L. and Camarena, Beatriz and Campbell, Desmond and Cappi, Carolina and Cardona Silgado, Julio C. and Cath, Danielle C. and Cavallini, Maria C. and Chavira, Denise A. and Chouinard, Sylvian and Conti, David V. and Cook, Edwin H. and Coric, Vladimir and Cullen, Bernadette A. and Deforce, Dieter and Delorme, Richard and Dion, Yves and Edlund, Christopher K. and Egberts, Karin and Falkai, Peter and Fernandez, Thomas V. and Gallagher, Patience J. and Garrido, Helena and Geller, Daniel and Girard, Simon L. and Grabe, Hans J. and Grados, Marco A. and Greenberg, Benjamin D. and Gross-Tsur, Varda and Haddad, Stephen and Heiman, Gary A. and Hemmings, Sian M. J. and Hounie, Ana G. and Illmann, Cornelia and Jankovic, Joseph and Jenike, Micheal A. and Kennedy, James L. and King, Robert A. and Kremeyer, Barbara and Kurlan, Roger and Lanzagorta, Nuria and Leboyer, Marion and Leckman, James F. and Lennertz, Leonhard and Liu, Chunyu and Lochner, Christine and Lowe, Thomas L. and Macciardi, Fabio and McCracken, James T. and McGrath, Lauren M. and Restrepo, Sandra C. Mesa and Moessner, Rainald and Morgan, Jubel and Muller, Heike and Murphy, Dennis L. and Naarden, Allan L. and Ochoa, William Cornejo and Ophoff, Roel A. and Osiecki, Lisa and Pakstis, Andrew J. and Pato, Michele T. and Pato, Carlos N. and Piacentini, John and Pittenger, Christopher and Pollak, Yehunda and Rauch, Scott L. and Renner, Tobias J. and Reus, Victor I. and Richter, Margaret A. and Riddle, Mark A. and Robertson, Mary M. and Romero, Roxana and Ros{\`a}rio, Maria C. and Rosenberg, David and Rouleau, Guy A. and Ruhrmann, Stephan and Ruiz-Linares, Andreas and Sampaio, Aline S. and Samuels, Jack and Sandor, Paul and Sheppard, Broke and Singer, Harvey S. and Smit, Jan H. and Stein, Dan J. and Strengman, E. and Tischfield, Jay A. and Valencia Duarte, Ana V. and Vallada, Homero and Van Nieuwerburgh, Flip and Veenstra-VanderWeele, Jeremy and Walitza, Susanne and Wang, Ying and Wendland, Jens R. and Westenberg, Herman G. M. and Shugart, Yin Yao and Miguel, Euripedes C. and McMahon, William and Wagner, Michael and Nicolini, Humberto and Posthuma, Danielle and Hanna, Gregory L. and Heutink, Peter and Denys, Damiaan and Arnold, Paul D. and Oostra, Ben A. and Nestadt, Gerald and Freimer, Nelson B. and Pauls, David L. and Wray, Naomi R. and Stewart, S. Evelyn and Mathews, Carol A. and Knowles, James A. and Cox, Nancy J. and Scharf, Jeremiah M.}, title = {Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture}, series = {PLoS Genetics}, volume = {9}, journal = {PLoS Genetics}, number = {10}, issn = {1553-7390}, doi = {10.1371/journal.pgen.1003864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127377}, pages = {e1003864}, year = {2013}, abstract = {The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5\% accounted for 21\% of the TS heritability and 0\% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.}, language = {en} } @article{StrekalovaVeniaminovaSvirinetal.2021, author = {Strekalova, Tatyana and Veniaminova, Ekaterina and Svirin, Evgeniy and Kopeikina, Ekaterina and Veremeyko, Tatyana and Yung, Amanda W. Y. and Proshin, Andrey and Tan, Shawn Zheng Kai and Khairuddin, Sharafuddin and Lim, Lee Wei and Lesch, Klaus-Peter and Walitza, Susanne and Anthony, Daniel C. and Ponomarev, Eugene D.}, title = {Sex-specific ADHD-like behaviour, altered metabolic functions, and altered EEG activity in sialyltransferase ST3GAL5-deficient mice}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {12}, issn = {2218-273X}, doi = {10.3390/biom11121759}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250071}, year = {2021}, abstract = {A deficiency in GM3-derived gangliosides, resulting from a lack of lactosylceramide-alpha-2,3-sialyltransferase (ST3GAL5), leads to severe neuropathology, including epilepsy and metabolic abnormalities. Disruption of ganglioside production by this enzyme may also have a role in the development of neuropsychiatric disorders. ST3Gal5 knock-out (St3gal5\(^{-/-}\)) mice lack a-, b-, and c-series gangliosides, but exhibit no overt neuropathology, possibly owing to the production of compensatory 0-series glycosphingolipids. Here, we sought to investigate the possibility that St3gal5\(^{-/-}\) mice might exhibit attention-deficit/hyperactivity disorder (ADHD)-like behaviours. In addition, we evaluated potential metabolic and electroencephalogram (EEG) abnormalities. St3gal5\(^{-/-}\) mice were subjected to behavioural testing, glucose tolerance tests, and the levels of expression of brain and peripheral A and B isoforms of the insulin receptor (IR) were measured. We found that St3gal5\(^{-/-}\) mice exhibit locomotor hyperactivity, impulsivity, neophobia, and anxiety-like behavior. The genotype also altered blood glucose levels and glucose tolerance. A sex bias was consistently found in relation to body mass and peripheral IR expression. Analysis of the EEG revealed an increase in amplitude in St3gal5\(^{-/-}\) mice. Together, St3gal5\(^{-/-}\) mice exhibit ADHD-like behaviours, altered metabolic and EEG measures providing a useful platform for better understanding of the contribution of brain gangliosides to ADHD and associated comorbidities.}, language = {en} } @article{SvirinVeniaminovaCostaNunesetal.2022, author = {Svirin, Evgeniy and Veniaminova, Ekaterina and Costa-Nunes, Jo{\~a}o Pedro and Gorlova, Anna and Umriukhin, Aleksei and Kalueff, Allan V. and Proshin, Andrey and Anthony, Daniel C. and Nedorubov, Andrey and Tse, Anna Chung Kwan and Walitza, Susanne and Lim, Lee Wei and Lesch, Klaus-Peter and Strekalova, Tatyana}, title = {Predation stress causes excessive aggression in female mice with partial genetic inactivation of tryptophan hydroxylase-2: evidence for altered myelination-related processes}, series = {Cells}, volume = {11}, journal = {Cells}, number = {6}, issn = {2073-4409}, doi = {10.3390/cells11061036}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267250}, year = {2022}, abstract = {The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2\(^{-/-}\)) mice. In heterozygous male mice (Tph2\(^{+/-}\)), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2\(^{+/-}\) mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2\(^{+/-}\) females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, na{\"i}ve female Tph2\(^{+/-}\) mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.}, language = {en} } @article{GruenblattBartlIuhosetal.2015, author = {Gr{\"u}nblatt, Edna and Bartl, Jasmin and Iuhos, Diana-Iulia and Knezovic, Ana and Trkulja, Vladimir and Riederer, Peter and Walitza, Susanne and Salkovic-Petrisic, Melita}, title = {Characterization of cognitive deficits in spontaneously hypertensive rats, accompanied by brain insulin receptor dysfunction}, series = {Journal of Molecular Psychiatry}, volume = {3}, journal = {Journal of Molecular Psychiatry}, number = {6}, doi = {10.1186/s40303-015-0012-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149593}, year = {2015}, abstract = {Background The spontaneously hypertensive rat (SHR) has been used to model changes in the central nervous system associated with cognitive-related disorders. Recent human and animal studies indicate a possible relationship between cognitive deficits, insulin resistance and hypertension. We aimed to investigate whether cognitively impaired SHRs develop central and/or peripheral insulin resistance and how their cognitive performance is influenced by the animal's sex and age as well as strains used for comparison (Wistar and Wistar-Kyoto/WKY). Methods Three and seven-month-old SHR, Wistar, and WKY rats were studied for their cognitive performance using Morris Water Maze (MWM) and Passive Avoidance tests (PAT). Plasma glucose and insulin were obtained after oral glucose tolerance tests. Cerebral cortex, hippocampus, and striatum status of insulin-receptor (IR) β-subunit and glycogen synthase kinase-3β (GSK3β) and their phosphorylated forms were obtained via ELISA. Results SHRs performed poorly in MWM and PAT in comparison to both control strains but more pronouncedly compared to WKY. Females performed poorer than males and 7-month-old SHRs had poorer MWM performance than 3-month-old ones. Although plasma glucose levels remained unchanged, plasma insulin levels were significantly increased in the glucose tolerance test in 7-month-old SHRs. SHRs demonstrated reduced expression and increased activity of IRβ-subunit in cerebral cortex, hippocampus, and striatum with different regional changes in phospho/total GSK3β ratio, as compared to WKYs. Conclusion Results indicate that cognitive deficits in SHRs are accompanied by both central and peripheral insulin dysfunction, thus allowing for the speculation that SHRs might additionally be considered as a model of insulin resistance-induced type of dementia.}, language = {en} } @article{PostemaHoogmanAmbrosinoetal.2021, author = {Postema, Merel C. and Hoogman, Martine and Ambrosino, Sara and Asherson, Philip and Banaschewski, Tobias and Bandeira, Cibele E. and Baranov, Alexandr and Bau, Claiton H.D. and Baumeister, Sarah and Baur-Streubel, Ramona and Bellgrove, Mark A. and Biederman, Joseph and Bralten, Janita and Brandeis, Daniel and Brem, Silvia and Buitelaar, Jan K. and Busatto, Geraldo F. and Castellanos, Francisco X. and Cercignani, Mara and Chaim-Avancini, Tiffany M. and Chantiluke, Kaylita C. and Christakou, Anastasia and Coghill, David and Conzelmann, Annette and Cubillo, Ana I. and Cupertino, Renata B. and de Zeeuw, Patrick and Doyle, Alysa E. and Durston, Sarah and Earl, Eric A. and Epstein, Jeffery N. and Ethofer, Thomas and Fair, Damien A. and Fallgatter, Andreas J. and Faraone, Stephen V. and Frodl, Thomas and Gabel, Matt C. and Gogberashvili, Tinatin and Grevet, Eugenio H. and Haavik, Jan and Harrison, Neil A. and Hartman, Catharina A. and Heslenfeld, Dirk J. and Hoekstra, Pieter J. and Hohmann, Sarah and H{\o}vik, Marie F. and Jernigan, Terry L. and Kardatzki, Bernd and Karkashadze, Georgii and Kelly, Clare and Kohls, Gregor and Konrad, Kerstin and Kuntsi, Jonna and Lazaro, Luisa and Lera-Miguel, Sara and Lesch, Klaus-Peter and Louza, Mario R. and Lundervold, Astri J. and Malpas, Charles B and Mattos, Paulo and McCarthy, Hazel and Namazova-Baranova, Leyla and Nicolau, Rosa and Nigg, Joel T. and Novotny, Stephanie E. and Oberwelland Weiss, Eileen and O'Gorman Tuura, Ruth L. and Oosterlaan, Jaap and Oranje, Bob and Paloyelis, Yannis and Pauli, Paul and Picon, Felipe A. and Plessen, Kerstin J. and Ramos-Quiroga, J. Antoni and Reif, Andreas and Reneman, Liesbeth and Rosa, Pedro G.P. and Rubia, Katya and Schrantee, Anouk and Schweren, Lizanne J.S. and Seitz, Jochen and Shaw, Philip and Silk, Tim J. and Skokauskas, Norbert and Soliva Vila, Juan C. and Stevens, Michael C. and Sudre, Gustavo and Tamm, Leanne and Tovar-Moll, Fernanda and van Erp, Theo G.M. and Vance, Alasdair and Vilarroya, Oscar and Vives-Gilabert, Yolanda and von Polier, Georg G. and Walitza, Susanne and Yoncheva, Yuliya N. and Zanetti, Marcus V. and Ziegler, Georg C. and Glahn, David C. and Jahanshad, Neda and Medland, Sarah E. and Thompson, Paul M. and Fisher, Simon E. and Franke, Barbara and Francks, Clyde}, title = {Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets}, series = {Journal of Child Psychology and Psychiatry}, volume = {62}, journal = {Journal of Child Psychology and Psychiatry}, number = {10}, doi = {10.1111/jcpp.13396}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239968}, pages = {1202 -- 1219}, year = {2021}, abstract = {Objective Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. Methods We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. Results There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. Conclusion Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.}, language = {en} } @article{GruenblattOnedaEkicietal.2017, author = {Gr{\"u}nblatt, Edna and Oneda, Beatrice and Ekici, Arif B. and Ball, Juliane and Geissler, Julia and Uebe, Steffen and Romanos, Marcel and Rauch, Anita and Walitza, Susanne}, title = {High resolution chromosomal microarray analysis in paediatric obsessive-compulsive disorder}, series = {BMC Medical Genomics}, volume = {10}, journal = {BMC Medical Genomics}, number = {68}, doi = {10.1186/s12920-017-0299-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172791}, year = {2017}, abstract = {Background Obsessive-Compulsive Disorder (OCD) is a common and chronic disorder in which a person has uncontrollable, reoccurring thoughts and behaviours. It is a complex genetic condition and, in case of early onset (EO), the patients manifest a more severe phenotype, and an increased heritability. Large (>500 kb) copy number variations (CNVs) previously associated with autism and schizophrenia have been reported in OCD. Recently, rare CNVs smaller than 500 kb overlapping risk loci for other neurodevelopmental conditions have also been reported in OCD, stressing the importance of examining CNVs of any size range. The aim of this study was to further investigate the role of rare and small CNVs in the aetiology of EO-OCD. Methods We performed high-resolution chromosomal microarray analysis in 121 paediatric OCD patients and in 124 random controls to identify rare CNVs (>50 kb) which might contribute to EO-OCD. Results The frequencies and the size of the observed rare CNVs in the patients did not differ from the controls. However, we observed a significantly higher frequency of rare CNVs affecting brain related genes, especially deletions, in the patients (OR = 1.98, 95\% CI 1.02-3.84; OR = 3.61, 95\% CI 1.14-11.41, respectively). Similarly, enrichment-analysis of CNVs gene content, performed with three independent methods, confirmed significant clustering of predefined genes involved in synaptic/brain related functional pathways in the patients but not in the controls. In two patients we detected \(de-novo\) CNVs encompassing genes previously associated with different neurodevelopmental disorders \(\textit{NRXN1, ANKS1B, UHRF1BP1}\)). Conclusions Our results further strengthen the role of small rare CNVs, particularly deletions, as susceptibility factors for paediatric OCD.}, language = {en} } @article{AsterRomanosWalitzaetal.2022, author = {Aster, Hans-Christoph and Romanos, Marcel and Walitza, Susanne and Gerlach, Manfred and M{\"u}hlberger, Andreas and Rizzo, Albert and Andreatta, Marta and Hasenauer, Natalie and Hartrampf, Philipp E. and Nerlich, Kai and Reiners, Christoph and Lorenz, Reinhard and Buck, Andreas K. and Deserno, Lorenz}, title = {Responsivity of the striatal dopamine system to methylphenidate — A within-subject I-123-β-CIT-SPECT study in male children and adolescents with attention-deficit/hyperactivity disorder}, series = {Frontiers in Psychiatry}, volume = {13}, journal = {Frontiers in Psychiatry}, issn = {1664-0640}, doi = {10.3389/fpsyt.2022.804730}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270862}, year = {2022}, abstract = {Background: Methylphenidate (MPH) is the first-line pharmacological treatment of attention-deficit/hyperactivity disorder (ADHD). MPH binds to the dopamine (DA) transporter (DAT), which has high density in the striatum. Assessments of the striatal dopamine transporter by single positron emission computed tomography (SPECT) in childhood and adolescent patients are rare but can provide insight on how the effects of MPH affect DAT availability. The aim of our within-subject study was to investigate the effect of MPH on DAT availability and how responsivity to MPH in DAT availability is linked to clinical symptoms and cognitive functioning. Methods Thirteen adolescent male patients (9-16 years) with a diagnosis of ADHD according to the DSM-IV and long-term stimulant medication (for at least 6 months) with MPH were assessed twice within 7 days using SPECT after application of I-123-β-CIT to examine DAT binding potential (DAT BP). SPECT measures took place in an on- and off-MPH status balanced for order across participants. A virtual reality continuous performance test was performed at each time point. Further clinical symptoms were assessed for baseline off-MPH. Results On-MPH status was associated with a highly significant change (-29.9\%) of striatal DAT BP as compared to off-MPH (t = -4.12, p = 0.002). A more pronounced change in striatal DAT BP was associated with higher off-MPH attentional and externalizing symptom ratings (Pearson r = 0.68, p = 0.01). Striatal DAT BP off-MPH, but not on-MPH, was associated with higher symptom ratings (Pearson r = 0.56, p = 0.04). Conclusion Our findings corroborate previous reports from mainly adult samples that MPH changes striatal DAT BP availability and suggest higher off-MPH DAT BP, likely reflecting low baseline DA levels, as a marker of symptom severity.}, language = {en} } @article{CapetianRoessnerKorteetal.2021, author = {Capetian, Philipp and Roessner, Veit and Korte, Caroline and Walitza, Susanne and Riederer, Franz and Taurines, Regina and Gerlach, Manfred and Moser, Andreas}, title = {Altered urinary tetrahydroisoquinoline derivatives in patients with Tourette syndrome: reflection of dopaminergic hyperactivity?}, series = {Journal of Neural Transmission}, volume = {128}, journal = {Journal of Neural Transmission}, issn = {0300-9564}, doi = {10.1007/s00702-020-02289-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235771}, pages = {115-121}, year = {2021}, abstract = {Tetrahydroisoquinolines (TIQs) such as salsolinol (SAL), norsalsolinol (NSAL) and their methylated derivatives N-methyl-norsalsolinol (NMNSAL) and N-methyl-salsolinol (NMSAL), modulate dopaminergic neurotransmission and metabolism in the central nervous system. Dopaminergic neurotransmission is thought to play an important role in the pathophysiology of chronic tic disorders, such as Tourette syndrome (TS). Therefore, the urinary concentrations of these TIQ derivatives were measured in patients with TS and patients with comorbid attention-deficit/hyperactivity disorder (TS + ADHD) compared with controls. Seventeen patients with TS, 12 with TS and ADHD, and 19 age-matched healthy controls with no medication took part in this study. Free levels of NSAL, NMNSAL, SAL, and NMSAL in urine were measured by a two-phase chromatographic approach. Furthermore, individual TIQ concentrations in TS patients were used in receiver-operating characteristics (ROC) curve analysis to examine the diagnostic value. NSAL concentrations were elevated significantly in TS [434.67 ± 55.4 nmol/l (standard error of mean = S.E.M.), two-way ANOVA, p < 0.0001] and TS + ADHD patients [605.18 ± 170.21 nmol/l (S.E.M.), two-way ANOVA, p < 0.0001] compared with controls [107.02 ± 33.18 nmol/l (S.E.M.), two-way ANOVA, p < 0.0001] and NSAL levels in TS + ADHD patients were elevated significantly in comparison with TS patients (two-way ANOVA, p = 0.017). NSAL demonstrated an AUC of 0.93 ± 0.046 (S.E.M) the highest diagnostic value of all metabolites for the diagnosis of TS. Our results suggest a dopaminergic hyperactivity underlying the pathophysiology of TS and ADHD. In addition, NSAL concentrations in urine may be a potential diagnostic biomarker of TS.}, language = {en} } @article{MelfsenJansRomanosetal.2022, author = {Melfsen, Siebke and Jans, Thomas and Romanos, Marcel and Walitza, Susanne}, title = {Family relationships in selective mutism — a comparison group study of children and adolescents}, series = {Children}, volume = {9}, journal = {Children}, number = {11}, issn = {2227-9067}, doi = {10.3390/children9111634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290386}, year = {2022}, abstract = {Selective mutism (SM) mostly develops early in childhood and this has led to interest into whether there could be differences in relationships in families with SM compared to a control group without SM. Currently, there are merely few empirical studies examining family relationships in SM. A sample of 28 children and adolescents with SM was compared to 33 controls without SM. The groups were investigated using self-report questionnaires (Selective Mutism Questionnaire, Child-Parent Relationship Test—Child Version) for the assessment of SM and family relationships. Children with SM did not report a significantly different relationship to their mothers compared with the control group without SM. However, the scores in respect to the relationship to their fathers were significantly lower in cohesion, identification and autonomy compared with children without SM. Relationships in families with SM should be considered more in therapy.}, language = {en} }