@article{WallstabeBussemerGroeberBeckeretal.2020, author = {Wallstabe, Julia and Bussemer, Lydia and Groeber-Becker, Florian and Freund, Lukas and Alb, Mirian and Dragan, Mariola and Waaga-Gasser, Ana Maria and Jakubietz, Rafael and Kneitz, Hermann and Rosenwald, Andreas and Rebhan, Silke and Walles, Heike and Mielke, Stephan}, title = {Inflammation-Induced Tissue Damage Mimicking GvHD in Human Skin Models as Test Platform for Immunotherapeutics}, series = {ALTEX}, volume = {37}, journal = {ALTEX}, number = {3}, doi = {10.14573/altex.1907181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229974}, pages = {429-440}, year = {2020}, abstract = {Due to the rapidly increasing development and use of cellular products, there is a rising demand for non-animal-based test platforms to predict, study and treat undesired immunity. Here, we generated human organotypic skin models from human biopsies by isolating and expanding keratinocytes, fibroblasts and microvascular endothelial cells and seeding these components on a collagen matrix or a biological vascularized scaffold matrix in a bioreactor. We then were able to induce inflammation-mediated tissue damage by adding pre-stimulated, mismatched allogeneic lymphocytes and/or inflammatory cytokine-containing supernatants histomorphologically mimicking severe graft versus host disease (GvHD) of the skin. This could be prevented by the addition of immunosuppressants to the models. Consequently, these models harbor a promising potential to serve as a test platform for the prediction, prevention and treatment of GvHD. They also allow functional studies of immune effectors and suppressors including but not limited to allodepleted lymphocytes, gamma-delta T cells, regulatory T cells and mesenchymal stromal cells, which would otherwise be limited to animal models. Thus, the current test platform, developed with the limitation that no professional antigen presenting cells are in place, could greatly reduce animal testing for investigation of novel immune therapies.}, language = {en} } @article{NietzerBaurSieberetal.2016, author = {Nietzer, Sarah and Baur, Florentin and Sieber, Stefan and Hansmann, Jan and Schwarz, Thomas and Stoffer, Carolin and H{\"a}fner, Heide and Gasser, Martin and Waaga-Gasser, Ana Maria and Walles, Heike and Dandekar, Gudrun}, title = {Mimicking metastases including tumor stroma: a new technique to generate a three-dimensional colorectal cancer model based on a biological decellularized intestinal scaffold}, series = {Tissue Engineering Part C-Methods}, volume = {22}, journal = {Tissue Engineering Part C-Methods}, number = {7}, doi = {10.1089/ten.tec.2015.0557}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188202}, pages = {621-635}, year = {2016}, abstract = {Tumor models based on cancer cell lines cultured two-dimensionally (2D) on plastic lack histological complexity and functionality compared to the native microenvironment. Xenogenic mouse tumor models display higher complexity but often do not predict human drug responses accurately due to species-specific differences. We present here a three-dimensional (3D) in vitro colon cancer model based on a biological scaffold derived from decellularized porcine jejunum (small intestine submucosa+mucosa, SISmuc). Two different cell lines were used in monoculture or in coculture with primary fibroblasts. After 14 days of culture, we demonstrated a close contact of human Caco2 colon cancer cells with the preserved basement membrane on an ultrastructural level as well as morphological characteristics of a well-differentiated epithelium. To generate a tissue-engineered tumor model, we chose human SW480 colon cancer cells, a reportedly malignant cell line. Malignant characteristics were confirmed in 2D cell culture: SW480 cells showed higher vimentin and lower E-cadherin expression than Caco2 cells. In contrast to Caco2, SW480 cells displayed cancerous characteristics such as delocalized E-cadherin and nuclear location of beta-catenin in a subset of cells. One central drawback of 2D cultures-especially in consideration of drug testing-is their artificially high proliferation. In our 3D tissue-engineered tumor model, both cell lines showed decreased numbers of proliferating cells, thus correlating more precisely with observations of primary colon cancer in all stages (UICC I-IV). Moreover, vimentin decreased in SW480 colon cancer cells, indicating a mesenchymal to epithelial transition process, attributed to metastasis formation. Only SW480 cells cocultured with fibroblasts induced the formation of tumor-like aggregates surrounded by fibroblasts, whereas in Caco2 cocultures, a separate Caco2 cell layer was formed separated from the fibroblast compartment beneath. To foster tissue generation, a bioreactor was constructed for dynamic culture approaches. This induced a close tissue-like association of cultured tumor cells with fibroblasts reflecting tumor biopsies. Therapy with 5-fluorouracil (5-FU) was effective only in 3D coculture. In conclusion, our 3D tumor model reflects human tissue-related tumor characteristics, including lower tumor cell proliferation. It is now available for drug testing in metastatic context-especially for substances targeting tumor-stroma interactions.}, language = {en} } @article{KressBaurOttoetal.2018, author = {Kress, Sebastian and Baur, Johannes and Otto, Christoph and Burkard, Natalie and Braspenning, Joris and Walles, Heike and Nickel, Joachim and Metzger, Marco}, title = {Evaluation of a miniaturized biologically vascularized scaffold in vitro and in vivo}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {4719}, doi = {10.1038/s41598-018-22688-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176343}, year = {2018}, abstract = {In tissue engineering, the generation and functional maintenance of dense voluminous tissues is mainly restricted due to insufficient nutrient supply. Larger three-dimensional constructs, which exceed the nutrient diffusion limit become necrotic and/or apoptotic in long-term culture if not provided with an appropriate vascularization. Here, we established protocols for the generation of a pre-vascularized biological scaffold with intact arterio-venous capillary loops from rat intestine, which is decellularized under preservation of the feeding and draining vascular tree. Vessel integrity was proven by marker expression, media/blood reflow and endothelial LDL uptake. In vitro maintenance persisted up to 7 weeks in a bioreactor system allowing a stepwise reconstruction of fully vascularized human tissues and successful in vivo implantation for up to 4 weeks, although with time-dependent decrease of cell viability. The vascularization of the construct lead to a 1.5× increase in cellular drug release compared to a conventional static culture in vitro. For the first time, we performed proof-of-concept studies demonstrating that 3D tissues can be maintained within a miniaturized vascularized scaffold in vitro and successfully implanted after re-anastomosis to the intrinsic blood circulation in vivo. We hypothesize that this technology could serve as a powerful platform technology in tissue engineering and regenerative medicine.}, language = {en} }