@article{SerenGrimmFitzetal.2016, author = {Seren, {\"U}mit and Grimm, Dominik and Fitz, Joffrey and Weigel, Detlef and Nordborg, Magnus and Borgwardt, Karsten and Korte, Arthur}, title = {AraPheno: a public database for Arabidopsis thaliana phenotypes}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {D1}, doi = {10.1093/nar/gkw986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147909}, pages = {D1054-D1059}, year = {2016}, abstract = {Natural genetic variation makes it possible to discover evolutionary changes that have been maintained in a population because they are advantageous. To understand genotype-phenotype relationships and to investigate trait architecture, the existence of both high-resolution genotypic and phenotypic data is necessary. Arabidopsis thaliana is a prime model for these purposes. This herb naturally occurs across much of the Eurasian continent and North America. Thus, it is exposed to a wide range of environmental factors and has been subject to natural selection under distinct conditions. Full genome sequencing data for more than 1000 different natural inbred lines are available, and this has encouraged the distributed generation of many types of phenotypic data. To leverage these data for meta analyses, AraPheno (https://arapheno.1001genomes.org) provide a central repository of population-scale phenotypes for A. thaliana inbred lines. AraPheno includes various features to easily access, download and visualize the phenotypic data. This will facilitate a comparative analysis of the many different types of phenotypic data, which is the base to further enhance our understanding of the genotype-phenotype map.}, language = {en} } @article{KuenstnerHoffmannFraseretal.2016, author = {K{\"u}nstner, Axel and Hoffmann, Margarete and Fraser, Bonnie A. and Kottler, Verena A. and Sharma, Eshita and Weigel, Detlef and Dreyer, Christine}, title = {The Genome of the Trinidadian Guppy, Poecilia reticulata, and Variation in the Guanapo Population}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0169087}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166755}, pages = {e0169087}, year = {2016}, abstract = {For over a century, the live bearing guppy, Poecilia reticulata, has been used to study sexual selection as well as local adaptation. Natural guppy populations differ in many traits that are of intuitively adaptive significance such as ornamentation, age at maturity, brood size and body shape. Water depth, light supply, food resources and predation regime shape these traits, and barrier waterfalls often separate contrasting environments in the same river. We have assembled and annotated the genome of an inbred single female from a high-predation site in the Guanapo drainage. The final assembly comprises 731.6 Mb with a scaffold N50 of 5.3 MB. Scaffolds were mapped to linkage groups, placing 95\% of the genome assembly on the 22 autosomes and the X-chromosome. To investigate genetic variation in the population used for the genome assembly, we sequenced 10 wild caught male individuals. The identified 5 million SNPs correspond to an average nucleotide diversity (π) of 0.0025. The genome assembly and SNP map provide a rich resource for investigating adaptation to different predation regimes. In addition, comparisons with the genomes of other Poeciliid species, which differ greatly in mechanisms of sex determination and maternal resource allocation, as well as comparisons to other teleost genera can begin to reveal how live bearing evolved in teleost fish.}, language = {en} } @article{TogninalliSerenMengetal.2018, author = {Togninalli, Matteo and Seren, {\"U}mit and Meng, Dazhe and Fitz, Joffrey and Nordborg, Magnus and Weigel, Detlef and Borgwardt, Karsten and Korte, Arthur and Grimm, Dominik G.}, title = {The AraGWAS Catalog: a curated and standardized Arabidopsis thaliana GWAS catalog}, series = {Nucleic Acids Research}, volume = {46}, journal = {Nucleic Acids Research}, number = {D1}, doi = {10.1093/nar/gkx954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158727}, pages = {D1150-D1156}, year = {2018}, abstract = {The abundance of high-quality genotype and phenotype data for the model organism Arabidopsis thaliana enables scientists to study the genetic architecture of many complex traits at an unprecedented level of detail using genome-wide association studies (GWAS). GWAS have been a great success in A. thaliana and many SNP-trait associations have been published. With the AraGWAS Catalog (https://aragwas.1001genomes.org) we provide a publicly available, manually curated and standardized GWAS catalog for all publicly available phenotypes from the central A. thaliana phenotype repository, AraPheno. All GWAS have been recomputed on the latest imputed genotype release of the 1001 Genomes Consortium using a standardized GWAS pipeline to ensure comparability between results. The catalog includes currently 167 phenotypes and more than 222 000 SNP-trait associations with P < 10\(^{-4}\), of which 3887 are significantly associated using permutation-based thresholds. The AraGWAS Catalog can be accessed via a modern web-interface and provides various features to easily access, download and visualize the results and summary statistics across GWAS.}, language = {en} }