@article{NotzLotzHerrmannetal.2021, author = {Notz, Quirin and Lotz, Christopher and Herrmann, Johannes and Vogt, Marius and Schlesinger, Tobias and Kredel, Markus and Muellges, Wolfgang and Weismann, Dirk and Westermaier, Thomas and Meybohm, Patrick and Kranke, Peter}, title = {Severe neurological complications in critically ill COVID‑19 patients}, series = {Journal of Neurology}, journal = {Journal of Neurology}, issn = {0340-5354}, doi = {10.1007/s00415-020-10152-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232429}, pages = {1576-1579}, year = {2021}, abstract = {No abstract available.}, language = {en} } @article{WeilandBeezWestermaieretal.2021, author = {Weiland, Judith and Beez, Alexandra and Westermaier, Thomas and Kunze, Ekkehard and Sir{\´e}n, Anna-Leena and Lilla, Nadine}, title = {Neuroprotective strategies in aneurysmal subarachnoid hemorrhage (aSAH)}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {11}, issn = {1422-0067}, doi = {10.3390/ijms22115442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260755}, year = {2021}, abstract = {Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury.}, language = {en} } @article{KunzeLillaStetteretal.2018, author = {Kunze, Ekkehard and Lilla, Nadine and Stetter, Christian and Ernestus, Ralf-Ingo and Westermaier, Thomas}, title = {Magnesium protects in episodes of critical perfusion after aneurysmal SAH}, series = {Translational Neuroscience}, volume = {9}, journal = {Translational Neuroscience}, number = {1}, doi = {10.1515/tnsci-2018-0016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177078}, pages = {99-105}, year = {2018}, abstract = {Background: To analyze whether magnesium has a neuroprotective effect during episodes that indicate a critical brain perfusion after aneurysmal subarachnoid hemorrhage (SAH). Methods: 107 patients with aSAH were randomized to continuously receive intravenous magnesium sulfate with target serum levels of 2.0 - 2.5 mmol/l (n = 54) or isotonic saline (n = 53). Neurological examination and transcranial Doppler sonography (TCD) were performed daily, Perfusion-CT (PCT) was acquired in 3-day intervals, angiography in case of suspected vasospasm. The primary endpoint was the development of secondary infarction following episodes of delayed ischemic neurological deficit (DIND), elevated mean flow velocity (MFV) in TCD or pathological findings in PCT. Results: In the magnesium group, 9 episodes of DIND were registered, none was followed by secondary infarction. In the control group, 23 episodes of DIND were registered, 9 were followed by secondary infarction (p < 0.05). In the magnesium group, 114 TCD-measurements showed an elevated MFV(> 140 cm/s). 7 were followed by new infarction. In control patients, 135 measurements showed elevated MFV, 32 were followed by new infarction (p < 0.05). 10 of 117 abnormal PCT-findings were followed by new infarction, compared to 30 of 122 in the control-group (p < 0.05). Conclusion: DIND, elevated MFV in TCD and abnormal PCT are findings which are associated with an increased risk to develop delayed secondary infarction. The results of this analysis suggest that magnesium-treatment may reduce the risk to develop infarction in a state of critical brain perfusion.}, language = {en} } @article{VadokasKoehlerWeilandetal.2019, author = {Vadokas, Georg and Koehler, Stefan and Weiland, Judith and Lilla, Nadine and Stetter, Christian and Westermaier, Thomas}, title = {Early antiinflammatory therapy attenuates brain damage after SAH in rats}, series = {Translational Neuroscience}, volume = {10}, journal = {Translational Neuroscience}, number = {1}, doi = {10.1515/tnsci-2019-0018}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201440}, pages = {104-111}, year = {2019}, abstract = {Background Early inflammatory processes may play an important role in the development of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experimental studies suggest that anti-inflammatory and membrane-stabilizing drugs might have beneficial effects, although the underlying mechanisms are not fully understood. The aim of this study was to investigate the effect of early treatment with methylprednisolone and minocycline on cerebral perfusion and EBI after experimental SAH. Methods Male Sprague-Dawley rats were subjected to SAH using the endovascular filament model. 30 minutes after SAH, they were randomly assigned to receive an intravenous injection of methylprednisolone (16mg/kg body weight, n=10), minocycline (45mg/kg body weight, n=10) or saline (n=11). Mean arterial blood pressure (MABP), intracranial pressure (ICP) and local cerebral blood flow (LCBF) over both hemispheres were recorded continuously for three hours following SAH. Neurological assessment was performed after 24 hours. Hippocampal damage was analyzed by immunohistochemical staining (caspase 3). Results Treatment with methylprednisolone or minocycline did not result in a significant improvement of MABP, ICP or LCBF. Animals of both treatment groups showed a non-significant trend to better neurological recovery compared to animals of the control group. Mortality was reduced and hippocampal damage significantly attenuated in both methylprednisolone and minocycline treated animals. Conclusion The results of this study suggest that inflammatory processes may play an important role in the pathophysiology of EBI after SAH. Early treatment with the anti-inflammatory drugs methylprednisolone or minocycline in the acute phase of SAH has the potential to reduce brain damage and exert a neuroprotective effect.}, language = {en} } @article{SchadtIsraelBeezetal.2023, author = {Schadt, Fabian and Israel, Ina and Beez, Alexandra and Alushi, Kastriot and Weiland, Judith and Ernestus, Ralf-Ingo and Westermaier, Thomas and Samnick, Samuel and Lilla, Nadine}, title = {Analysis of cerebral glucose metabolism following experimental subarachnoid hemorrhage over 7 days}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-26183-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300725}, year = {2023}, abstract = {Little is known about changes in brain metabolism following SAH, possibly leading towards secondary brain damage. Despite sustained progress in the last decade, analysis of in vivo acquired data still remains challenging. The present interdisciplinary study uses a semi-automated data analysis tool analyzing imaging data independently from the administrated radiotracer. The uptake of 2-[18F]Fluoro-2-deoxy-glucose ([\(^{18}\)F]FDG) was evaluated in different brain regions in 14 male Sprague-Dawley rats, randomized into two groups: (1) SAH induced by the endovascular filament model and (2) sham operated controls. Serial [\(^{18}\)F]FDG-PET measurements were carried out. Quantitative image analysis was performed by uptake ratio using a self-developed MRI-template based data analysis tool. SAH animals showed significantly higher [\(^{18}\)F]FDG accumulation in gray matter, neocortex and olfactory system as compared to animals of the sham group, while white matter and basal forebrain region showed significant reduced tracer accumulation in SAH animals. All significant metabolic changes were visualized from 3 h, over 24 h (day 1), day 4 and day 7 following SAH/sham operation. This [\(^{18}\)F]FDG-PET study provides important insights into glucose metabolism alterations following SAH—for the first time in different brain regions and up to day 7 during course of disease.}, language = {en} } @article{LinsenmannMaerzDufneretal.2021, author = {Linsenmann, Thomas and M{\"a}rz, Alexander and Dufner, Vera and Stetter, Christian and Weiland, Judith and Westermaier, Thomas}, title = {Optimization of radiation settings for angiography using 3D fluoroscopy for imaging of intracranial aneurysms}, series = {Computer Assisted Surgery}, volume = {26}, journal = {Computer Assisted Surgery}, number = {1}, doi = {10.1080/24699322.2021.1894240}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259251}, pages = {22-30}, year = {2021}, abstract = {Mobile 3D fluoroscopes have become increasingly available in neurosurgical operating rooms. We recently reported its use for imaging cerebral vascular malformations and aneurysms. This study was conducted to evaluate various radiation settings for the imaging of cerebral aneurysms before and after surgical occlusion. Eighteen patients with cerebral aneurysms with the indication for surgical clipping were included in this prospective analysis. Before surgery the patients were randomized into one of three different scan protocols according (default settings of the 3D fluoroscope): Group 1: 110 kV, 80 mA (enhanced cranial mode), group 2: 120 kV, 64 mA (lumbar spine mode), group 3: 120 kV, 25 mA (head/neck settings). Prior to surgery, a rotational fluoroscopy scan (duration 24 s) was performed without contrast agent followed by another scan with 50 ml of intravenous iodine contrast agent. The image files of both scans were transferred to an Apple PowerMac(R) workstation, subtracted and reconstructed using OsiriX(R) MD 10.0 software. The procedure was repeated after clip placement. The image quality regarding preoperative aneurysm configuration and postoperative assessment of aneurysm occlusion and vessel patency was analyzed by 2 independent reviewers using a 6-grade scale. This technique quickly supplies images of adequate quality to depict intracranial aneurysms and distal vessel patency after aneurysm clipping. Regarding these features, a further optimization to our previous protocol seems possible lowering the voltage and increasing tube current. For quick intraoperative assessment, image subtraction seems not necessary. Thus, a native scan without a contrast agent is not necessary. Further optimization may be possible using a different contrast injection protocol.}, language = {en} } @article{LillaFuellgrafStetteretal.2017, author = {Lilla, Nadine and F{\"u}llgraf, Hannah and Stetter, Christian and K{\"o}hler, Stefan and Ernestus, Ralf-Ingo and Westermaier, Thomas}, title = {First Description of Reduced Pyruvate Dehydrogenase Enzyme Activity Following Subarachnoid Hemorrhage (SAH)}, series = {Frontiers in Neuroscience}, volume = {11}, journal = {Frontiers in Neuroscience}, number = {37}, doi = {10.3389/fnins.2017.00037}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157636}, year = {2017}, abstract = {Object: Several previous studies reported metabolic derangements and an accumulation of metabolic products in the early phase of experimental subarachnoid hemorrhage (SAH), which may contribute to secondary brain damage. This may be a result of deranged oxygen utilization due to enzymatic dysfunction in aerobic glucose metabolism. This study was performed to investigate, if pyruvate dehydrogenase enzyme (PDH) is affected in its activity giving further hints for a derangement of oxidative metabolism. Methods: Eighteen male Sprague-Dawley rats were randomly assigned to one of two experimental groups (n = 9): (1) SAH induced by the endovascular filament model and (2) sham-operated controls. Mean arterial blood pressure (MABP), intracranial pressure (ICP), and local cerebral blood flow (LCBF; laser-Doppler flowmetry) were continuously monitored from 30 min before until 3 h after SAH. Thereafter, the animals were sacrificed and PDH activity was measured by ELISA. Results: PDH activity was significantly reduced in animals subjected to SAH compared to controls. Conclusion: The results of this study demonstrate for the first time a reduction of PDH activity following SAH, independent of supply of substrates and may be an independent factor contributing to a derangement of oxidative metabolism, failure of oxygen utilization, and secondary brain damage.}, language = {en} }