@article{LillaFuellgrafStetteretal.2017, author = {Lilla, Nadine and F{\"u}llgraf, Hannah and Stetter, Christian and K{\"o}hler, Stefan and Ernestus, Ralf-Ingo and Westermaier, Thomas}, title = {First Description of Reduced Pyruvate Dehydrogenase Enzyme Activity Following Subarachnoid Hemorrhage (SAH)}, series = {Frontiers in Neuroscience}, volume = {11}, journal = {Frontiers in Neuroscience}, number = {37}, doi = {10.3389/fnins.2017.00037}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157636}, year = {2017}, abstract = {Object: Several previous studies reported metabolic derangements and an accumulation of metabolic products in the early phase of experimental subarachnoid hemorrhage (SAH), which may contribute to secondary brain damage. This may be a result of deranged oxygen utilization due to enzymatic dysfunction in aerobic glucose metabolism. This study was performed to investigate, if pyruvate dehydrogenase enzyme (PDH) is affected in its activity giving further hints for a derangement of oxidative metabolism. Methods: Eighteen male Sprague-Dawley rats were randomly assigned to one of two experimental groups (n = 9): (1) SAH induced by the endovascular filament model and (2) sham-operated controls. Mean arterial blood pressure (MABP), intracranial pressure (ICP), and local cerebral blood flow (LCBF; laser-Doppler flowmetry) were continuously monitored from 30 min before until 3 h after SAH. Thereafter, the animals were sacrificed and PDH activity was measured by ELISA. Results: PDH activity was significantly reduced in animals subjected to SAH compared to controls. Conclusion: The results of this study demonstrate for the first time a reduction of PDH activity following SAH, independent of supply of substrates and may be an independent factor contributing to a derangement of oxidative metabolism, failure of oxygen utilization, and secondary brain damage.}, language = {en} } @article{WestermaierKoehlerLinsenmannetal.2015, author = {Westermaier, Thomas and Koehler, Stefan and Linsenmann, Thomas and Kinderlen, Michael and Pakos, Paul and Ernestus, Ralf-Ingo}, title = {Intraoperative Myelography in Cervical Multilevel Stenosis Using 3D Rotational Fluoroscopy: Assessment of Feasibility and Image Quality}, series = {Radiology Research and Practice}, volume = {2015}, journal = {Radiology Research and Practice}, doi = {10.1155/2015/498936}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125779}, pages = {498936}, year = {2015}, abstract = {Background. Intraoperative myelography has been reported for decompression control in multilevel lumbar disease. Cervical myelography is technically more challenging. Modern 3D fluoroscopy may provide a new opportunity supplying multiplanar images. This study was performed to determine the feasibility and image quality of intraoperative cervical myelography using a 3D fluoroscope. Methods. The series included 9 patients with multilevel cervical stenosis. After decompression, 10 mL of water-soluble contrast agent was administered via a lumbar drainage and the operating table was tilted. Thereafter, a 3D fluoroscopy scan (O-Arm) was performed and visually evaluated. Findings. The quality of multiplanar images was sufficient to supply information about the presence of residual stenosis. After instrumentation, metal artifacts lowered image quality. In 3 cases, decompression was continued because myelography depicted residual stenosis. In one case, anterior corpectomy was not completed because myelography showed sufficient decompression after 2-level discectomy. Interpretation. Intraoperative myelography using 3D rotational fluoroscopy is useful for the control of surgical decompression in multilevel spinal stenosis providing images comparable to postmyelographic CT. The long duration of contrast delivery into the cervical spine may be solved by preoperative contrast administration. The method is susceptible to metal artifacts and, therefore, should be applied before metal implants are placed.}, language = {en} } @article{LinsenmannMonoranuVinceetal.2014, author = {Linsenmann, Thomas and Monoranu, Camelia M. and Vince, Giles H. and Westermaier, Thomas and Hagemann, Carsten and Kessler, Almuth F. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario}, title = {Long-term tumor control of spinal dissemination of cerebellar glioblastoma multiforme by combined adjuvant bevacizumab antibody therapy: a case report}, doi = {10.1186/1756-0500-7-496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110536}, year = {2014}, abstract = {Background Glioblastoma multiforme located in the posterior fossa is extremely rare with a frequency up to 3.4\%. Compared with glioblastoma of the hemispheres the prognosis of infratentorial glioblastoma seems to be slightly better. Absence of brainstem invasion and low expression rates of epidermal growth factor receptor are described as factors for long-time survival due to the higher radiosensitivity of these tumors. Case presentation In this case study, we report a German female patient with an exophytic glioblastoma multiforme arising from the cerebellar tonsil and a secondary spinal manifestation. Furthermore, the tumor showed no O (6)-Methylguanine-DNA methyltransferase promotor-hypermethylation and no isocitrate dehydrogenase 1 mutations. All these signs are accompanied by significantly shorter median overall survival. A long-term tumor control of the spinal metastases was achieved by a combined temozolomide/bevacizumab and irradiation therapy, as part of a standard care administered by the treating physician team. Conclusion To our knowledge this is the first published case of a combined cerebellar exophytic glioblastoma with a subsequent solid spinal manifestation. Furthermore this case demonstrates a benefit undergoing this special adjuvant therapy regime in terms of overall survival. Due to the limited overall prognosis of the disease, spinal manifestations of glioma are rarely clinically relevant. The results of our instructive case, however, with a positive effect on both life quality and survival warrant treating future patients in the frame of a prospective clinical study.}, language = {en} } @article{KunzeLillaStetteretal.2018, author = {Kunze, Ekkehard and Lilla, Nadine and Stetter, Christian and Ernestus, Ralf-Ingo and Westermaier, Thomas}, title = {Magnesium protects in episodes of critical perfusion after aneurysmal SAH}, series = {Translational Neuroscience}, volume = {9}, journal = {Translational Neuroscience}, number = {1}, doi = {10.1515/tnsci-2018-0016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177078}, pages = {99-105}, year = {2018}, abstract = {Background: To analyze whether magnesium has a neuroprotective effect during episodes that indicate a critical brain perfusion after aneurysmal subarachnoid hemorrhage (SAH). Methods: 107 patients with aSAH were randomized to continuously receive intravenous magnesium sulfate with target serum levels of 2.0 - 2.5 mmol/l (n = 54) or isotonic saline (n = 53). Neurological examination and transcranial Doppler sonography (TCD) were performed daily, Perfusion-CT (PCT) was acquired in 3-day intervals, angiography in case of suspected vasospasm. The primary endpoint was the development of secondary infarction following episodes of delayed ischemic neurological deficit (DIND), elevated mean flow velocity (MFV) in TCD or pathological findings in PCT. Results: In the magnesium group, 9 episodes of DIND were registered, none was followed by secondary infarction. In the control group, 23 episodes of DIND were registered, 9 were followed by secondary infarction (p < 0.05). In the magnesium group, 114 TCD-measurements showed an elevated MFV(> 140 cm/s). 7 were followed by new infarction. In control patients, 135 measurements showed elevated MFV, 32 were followed by new infarction (p < 0.05). 10 of 117 abnormal PCT-findings were followed by new infarction, compared to 30 of 122 in the control-group (p < 0.05). Conclusion: DIND, elevated MFV in TCD and abnormal PCT are findings which are associated with an increased risk to develop delayed secondary infarction. The results of this analysis suggest that magnesium-treatment may reduce the risk to develop infarction in a state of critical brain perfusion.}, language = {en} } @article{WestermaierStetterKunzeetal.2013, author = {Westermaier, Thomas and Stetter, Christian and Kunze, Ekkehard and Willner, Nadine and Raslan, Furat and Vince, Giles H. and Ernestus, Ralf-Ingo}, title = {Magnesium treatment for neuroprotection in ischemic diseases of the brain}, series = {Experimental and Translational Stroke Medicine}, journal = {Experimental and Translational Stroke Medicine}, doi = {10.1186/2040-7378-5-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96729}, year = {2013}, abstract = {This article reviews experimental and clinical data on the use of magnesium as a neuroprotective agent in various conditions of cerebral ischemia. Whereas magnesium has shown neuroprotective properties in animal models of global and focal cerebral ischemia, this effect could not be reproduced in a large human stroke trial. These conflicting results may be explained by the timing of treatment. While treatment can be started before or early after ischemia in experimental studies, there is an inevitable delay of treatment in human stroke. Magnesium administration to women at risk for preterm birth has been investigated in several randomized controlled trials and was found to reduce the risk of neurological deficits for the premature infant. Postnatal administration of magnesium to babies after perinatal asphyxia has been studied in a number of controlled clinical trials. The results are promising but the trials have, so far, been underpowered. In aneurysmal subarachnoid hemorrhage (SAH), cerebral ischemia arises with the onset of delayed cerebral vasospasm several days after aneurysm rupture. Similar to perinatal asphyxia in impending preterm delivery, treatment can be started prior to ischemia. The results of clinical trials are conflicting. Several clinical trials did not show an additive effect of magnesium with nimodipine, another calcium antagonist which is routinely administered to SAH patients in many centers. Other trials found a protective effect after magnesium therapy. Thus, it may still be a promising substance in the treatment of secondary cerebral ischemia after aneurysmal SAH. Future prospects of magnesium therapy are discussed.}, language = {en} } @article{WeilandBeezWestermaieretal.2021, author = {Weiland, Judith and Beez, Alexandra and Westermaier, Thomas and Kunze, Ekkehard and Sir{\´e}n, Anna-Leena and Lilla, Nadine}, title = {Neuroprotective strategies in aneurysmal subarachnoid hemorrhage (aSAH)}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {11}, issn = {1422-0067}, doi = {10.3390/ijms22115442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260755}, year = {2021}, abstract = {Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury.}, language = {en} } @article{Westermaier2013, author = {Westermaier, Thomas}, title = {Neuroprotective Treatment Strategies for Delayed Cerebral Ischemia after Subarachnoid Hemorrhage - Review of Literature and Future Prospects}, doi = {10.4172/2155-9562.1000183}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112631}, year = {2013}, abstract = {This article reviews experimental and clinical data on the use of various neuroprotective agents and therapeutic measures after aneurysmal subarachnoid hemorrhage (SAH). While calcium antagonists have been used in the past and are still part of the standard treatment regimen in most departments involved in the treatment of SAH, other classes of drugs and various other methods have been tested for their potential to inhibit delayed ischemia after SAH. This article reviews the literature about clinical studies about the efficacy of various neuroprotective agents and methods including statins, steroids and Endothelin-antagonists and other - alternative - methods like cisternal lavage, intrathecal drug delivery and hypercapnia, offering future perspectives for the treatment of this hazardous disease.}, language = {en} } @article{LinsenmannMaerzDufneretal.2021, author = {Linsenmann, Thomas and M{\"a}rz, Alexander and Dufner, Vera and Stetter, Christian and Weiland, Judith and Westermaier, Thomas}, title = {Optimization of radiation settings for angiography using 3D fluoroscopy for imaging of intracranial aneurysms}, series = {Computer Assisted Surgery}, volume = {26}, journal = {Computer Assisted Surgery}, number = {1}, doi = {10.1080/24699322.2021.1894240}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259251}, pages = {22-30}, year = {2021}, abstract = {Mobile 3D fluoroscopes have become increasingly available in neurosurgical operating rooms. We recently reported its use for imaging cerebral vascular malformations and aneurysms. This study was conducted to evaluate various radiation settings for the imaging of cerebral aneurysms before and after surgical occlusion. Eighteen patients with cerebral aneurysms with the indication for surgical clipping were included in this prospective analysis. Before surgery the patients were randomized into one of three different scan protocols according (default settings of the 3D fluoroscope): Group 1: 110 kV, 80 mA (enhanced cranial mode), group 2: 120 kV, 64 mA (lumbar spine mode), group 3: 120 kV, 25 mA (head/neck settings). Prior to surgery, a rotational fluoroscopy scan (duration 24 s) was performed without contrast agent followed by another scan with 50 ml of intravenous iodine contrast agent. The image files of both scans were transferred to an Apple PowerMac(R) workstation, subtracted and reconstructed using OsiriX(R) MD 10.0 software. The procedure was repeated after clip placement. The image quality regarding preoperative aneurysm configuration and postoperative assessment of aneurysm occlusion and vessel patency was analyzed by 2 independent reviewers using a 6-grade scale. This technique quickly supplies images of adequate quality to depict intracranial aneurysms and distal vessel patency after aneurysm clipping. Regarding these features, a further optimization to our previous protocol seems possible lowering the voltage and increasing tube current. For quick intraoperative assessment, image subtraction seems not necessary. Thus, a native scan without a contrast agent is not necessary. Further optimization may be possible using a different contrast injection protocol.}, language = {en} } @article{NotzLotzHerrmannetal.2021, author = {Notz, Quirin and Lotz, Christopher and Herrmann, Johannes and Vogt, Marius and Schlesinger, Tobias and Kredel, Markus and Muellges, Wolfgang and Weismann, Dirk and Westermaier, Thomas and Meybohm, Patrick and Kranke, Peter}, title = {Severe neurological complications in critically ill COVID‑19 patients}, series = {Journal of Neurology}, journal = {Journal of Neurology}, issn = {0340-5354}, doi = {10.1007/s00415-020-10152-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232429}, pages = {1576-1579}, year = {2021}, abstract = {No abstract available.}, language = {en} } @article{StetterWeidnerLillaetal.2021, author = {Stetter, Christian and Weidner, Franziska and Lilla, Nadine and Weiland, Judith and Kunze, Ekkehard and Ernestus, Ralf-Ingo and Muellenbach, Ralf Michael and Westermaier, Thomas}, title = {Therapeutic hypercapnia for prevention of secondary ischemia after severe subarachnoid hemorrhage: physiological responses to continuous hypercapnia}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-91007-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260779}, pages = {11715}, year = {2021}, abstract = {Temporary hypercapnia has been shown to increase cerebral blood flow (CBF) and might be used as a therapeutical tool in patients with severe subarachnoid hemorrhage (SAH). It was the aim of this study was to investigate the optimum duration of hypercapnia. This point is assumed to be the time at which buffer systems become active, cause an adaptation to changes of the arterial partial pressure of carbon dioxide (PaCO2) and annihilate a possible therapeutic effect. In this prospective interventional study in a neurosurgical ICU the arterial partial pressure of carbon dioxide (PaCO\(_2\)) was increased to a target range of 55 mmHg for 120 min by modification of the respiratory minute volume (RMV) one time a day between day 4 and 14 in 12 mechanically ventilated poor-grade SAH-patients. Arterial blood gases were measured every 15 min. CBF and brain tissue oxygen saturation (StiO\(_2\)) were the primary and secondary end points. Intracranial pressure (ICP) was controlled by an external ventricular drainage. Under continuous hypercapnia (PaCO\(_2\) of 53.17 ± 5.07), CBF was significantly elevated between 15 and 120 min after the start of hypercapnia. During the course of the trial intervention, cardiac output also increased significantly. To assess the direct effect of hypercapnia on brain perfusion, the increase of CBF was corrected by the parallel increase of cardiac output. The maximum direct CBF enhancing effect of hypercapnia of 32\% was noted at 45 min after the start of hypercapnia. Thereafter, the CBF enhancing slowly declined. No relevant adverse effects were observed. CBF and StiO\(_2\) reproducibly increased by controlled hypercapnia in all patients. After 45 min, the curve of CBF enhancement showed an inflection point when corrected by cardiac output. It is concluded that 45 min might be the optimum duration for a therapeutic use and may provide an optimal balance between the benefits of hypercapnia and risks of a negative rebound effect after return to normal ventilation parameters.}, language = {en} } @article{KunzePhamRaslanetal.2012, author = {Kunze, Ekkehard and Pham, Mirko and Raslan, Furat and Stetter, Christian and Lee, Jin-Yul and Solymosi, Laszlo and Ernestus, Ralf-Ingo and Hamilton Vince, Giles and Westermaier, Thomas}, title = {Value of Perfusion CT, Transcranial Doppler Sonography and Neurological Examination to detect delayed Vasospasm after aneurysmal Subarachnoid Hemorrhage [Research Article]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76241}, year = {2012}, abstract = {Background If detected in time, delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) may be treated by balloon angioplasty or chemical vasospasmolysis in order to enhance cerebral blood flow (CBF) and protect the brain from ischemic damage. This study was conceived to compare the diagnostic accuracy of detailed neurological examination, Transcranial Doppler Sonography (TCD), and Perfusion-CT (PCT) to detect angiographic vasospasm. Methods The sensitivity, specificity, positive and negative predictive values of delayed ischemic neurological deterioration (DIND), pathological findings on PCT- maps, and accelerations of the mean flow velocity (MVF) were calculated. Results The accuracy of DIND to predict angiographic vasospasm was 0.88. An acceleration of MFV in TCD (>140 cm/s) had an accuracy of 0.64, positive PCT-findings of 0.69 with a higher sensitivity, and negative predictive value than TCD. Interpretation Neurological assessment at close intervals is the most sensitive and specific parameter for cerebral vasospasm. PCT has a higher accuracy, sensitivity and negative predictive value than TCD. If detailed neurological evaluation is possible, it should be the leading parameter in the management and treatment decisions. If patients are not amenable to detailed neurological examination, PCT at regular intervals is a helpful tool to diagnose secondary vasospasm after aneurysmal SAH.}, subject = {Medizin}, language = {en} }