@article{BekesFriedlKoehleretal.2016, author = {Bekes, Inga and Friedl, Thomas W. P. and K{\"o}hler, Tanja and M{\"o}bus, Volker and Janni, Wolfgang and W{\"o}ckel, Achim and Wulff, Christine}, title = {Does VEGF facilitate local tumor growth and spread into the abdominal cavity by suppressing endothelial cell adhesion, thus increasing vascular peritoneal permeability followed by ascites production in ovarian cancer?}, series = {Molecular Cancer}, volume = {15}, journal = {Molecular Cancer}, number = {13}, doi = {10.1186/s12943-016-0497-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169298}, year = {2016}, abstract = {Background Ovarian cancer is mostly associated with pathologically regulated permeability of peritoneal vessels, leading to ascites. Here, we investigated the molecular regulation of endothelial permeability by the vascular endothelial growth factor (VEGF) and both tight and adherens junction proteins (VE-cadherin and claudin 5) with regards to the tumor biology of different ovarian cancer types. Methods Serum and ascites samples before and after surgery, as well as peritoneal biopsies of 68 ovarian cancer patients and 20 healthy controls were collected. In serum and ascites VEGF protein was measured by ELISA. In peritoneal biopsies co-localization of VE-cadherin and claudin 5 was investigated using immunohistochemical dual staining. In addition, the gene expression of VE-cadherin and claudin 5 was quantified by Real-time PCR. Differences in VEGF levels, VE-cadherin and claudin 5 gene expression were analyzed in relation to various tumor characteristics (tumor stage, grading, histological subtypes, resection status after surgery) and then compared to controls. Furthermore, human primary ovarian cancer cells were co-cultured with human umbilical vein endothelial cells (HUVEC) and changes in VE-cadherin and claudin 5 were investigated after VEGF inhibition. Results VEGF was significantly increased in tumor patients in comparison to controls and accumulates in ascites. The highest VEGF levels were found in patients diagnosed with advanced tumor stages, with tumors of poor differentiation, or in the group of solid / cystic-solid tumors. Patients with residual tumor after operation showed significantly higher levels of VEGF both before and after surgery as compared to tumor-free resected patients. Results of an immunohistochemical double-staining experiment indicated co-localization of VE-cadherin and claudin 5 in the peritoneal vasculature. Compared to controls, expression of VE-cadherin and claudin 5 was significantly suppressed in peritoneal vessels of tumor patients, but there were no significant differences regarding VE-cadherin and claudin 5 expression in relation to different tumor characteristics. A significant positive correlation was found between VE-cadherin and claudin 5 expression. VEGF inhibition in vitro was associated with significant increase in VE-cadherin and claudin 5. Conclusions Our results indicate that increased peritoneal permeability in ovarian cancer is due to down-regulation of adhesion proteins via tumor derived VEGF. Advanced ovarian cancer with aggressive tumor biology may be associated with early dysregulation of vascular permeability leading to ascites. These patients may benefit from therapeutic VEGF inhibition.}, language = {en} } @article{BalafoutasWoeckelWulffetal.2020, author = {Balafoutas, Dimitrios and W{\"o}ckel, Achim and Wulff, Christine and Joukhadar, Ralf}, title = {Implementation of robotic gynecological surgery in a German University Hospital: patient safety after 110 procedures}, series = {Archives of Gynecology and Obstetrics}, volume = {302}, journal = {Archives of Gynecology and Obstetrics}, issn = {0932-0067}, doi = {10.1007/s00404-020-05751-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232650}, pages = {1381-1388}, year = {2020}, abstract = {Purpose Robotic surgery represents the latest development in the field of minimally invasive surgery and offers many technical advantages. Despite the higher costs, this novel approach has been applied increasingly in gynecological surgery. Regarding the implementation of a new operative method; however, the most important factor to be aware of is patient safety. In this study, we describe our experience in implementing robotic surgery in a German University Hospital focusing on patient safety after 110 procedures. Methods We performed a retrospective analysis of 110 consecutive robotic procedures performed in the University Hospital of W{\"u}rzburg between June 2017 and September 2019. During this time, 37 patients were treated for benign general gynecological conditions, 27 patients for gynecological malignancies, and 46 patients for urogynecological conditions. We evaluated patient safety through standardized assessment of intra- and postoperative complications, which were categorized according to the Clavien-Dindo classification. Results No complications were recorded in 90 (81.8\%) operations. We observed Clavien-Dindo grade I complications in 8 (7.3\%) cases, grade II complications in 5 (4.5\%) cases, grade IIIa complications in 1 case (0.9\%), and grade IIIb complications in 6 (5.5\%) cases. No conversion to laparotomy or blood transfusion was needed. Conclusion Robotic surgery could be implemented for complex gynecological operations without relevant problems and was accompanied by low complication rates.}, language = {en} } @article{HerbertFickHeydarianetal.2022, author = {Herbert, Saskia-Laureen and Fick, Andrea and Heydarian, Motaharehsadat and Metzger, Marco and W{\"o}ckel, Achim and Rudel, Thomas and Kozjak-Pavlovic, Vera and Wulff, Christine}, title = {Establishment of the SIS scaffold-based 3D model of human peritoneum for studying the dissemination of ovarian cancer}, series = {Journal of Tissue Engineering}, volume = {13}, journal = {Journal of Tissue Engineering}, issn = {2041-7314}, doi = {10.1177/20417314221088514}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301311}, pages = {1}, year = {2022}, abstract = {Ovarian cancer is the second most common gynecological malignancy in women. More than 70\% of the cases are diagnosed at the advanced stage, presenting as primary peritoneal metastasis, which results in a poor 5-year survival rate of around 40\%. Mechanisms of peritoneal metastasis, including adhesion, migration, and invasion, are still not completely understood and therapeutic options are extremely limited. Therefore, there is a strong requirement for a 3D model mimicking the in vivo situation. In this study, we describe the establishment of a 3D tissue model of the human peritoneum based on decellularized porcine small intestinal submucosa (SIS) scaffold. The SIS scaffold was populated with human dermal fibroblasts, with LP-9 cells on the apical side representing the peritoneal mesothelium, while HUVEC cells on the basal side of the scaffold served to mimic the endothelial cell layer. Functional analyses of the transepithelial electrical resistance (TEER) and the FITC-dextran assay indicated the high barrier integrity of our model. The histological, immunohistochemical, and ultrastructural analyses showed the main characteristics of the site of adhesion. Initial experiments using the SKOV-3 cell line as representative for ovarian carcinoma demonstrated the usefulness of our models for studying tumor cell adhesion, as well as the effect of tumor cells on endothelial cell-to-cell contacts. Taken together, our data show that the novel peritoneal 3D tissue model is a promising tool for studying the peritoneal dissemination of ovarian cancer.}, language = {en} } @article{KieselBeyersKaliszetal.2022, author = {Kiesel, Matthias and Beyers, Inga and Kalisz, Adam and Joukhadar, Ralf and W{\"o}ckel, Achim and Herbert, Saskia-Laureen and Curtaz, Carolin and Wulff, Christine}, title = {A 3D printed model of the female pelvis for practical education of gynecological pelvic examination}, series = {3D Printing in Medicine}, volume = {8}, journal = {3D Printing in Medicine}, doi = {10.1186/s41205-022-00139-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313347}, year = {2022}, abstract = {Background Pelvic palpation is a core component of every Gynecologic examination. It requires vigorous training, which is difficult due to its intimate nature, leading to a need of simulation. Up until now, there are mainly models available for mere palpation which do not offer adequate visualization of the concerning anatomical structures. In this study we present a 3D printed model of the female pelvis. It can improve both the practical teaching of gynecological pelvic examination for health care professionals and the spatial understanding of the relevant anatomy. Methods We developed a virtual, simplified model showing selected parts of the female pelvis. 3D printing was used to create a physical model. Results The life-size 3D printed model has the ability of being physically assembled step by step by its users. Consequently, it improves teaching especially when combining it with commercial phantoms, which are built solely for palpation training. This is achieved by correlating haptic and visual sensations with the resulting feedback received. Conclusion The presented 3D printed model of the female pelvis can be of aid for visualizing and teaching pelvic anatomy and examination to medical staff. 3D printing provides the possibility of creating, multiplying, adapting and sharing such data worldwide with little investment of resources. Thus, an important contribution to the international medical community can be made for training this challenging examination.}, language = {en} } @article{KieselBeyersKaliszetal.2022, author = {Kiesel, Matthias and Beyers, Inga and Kalisz, Adam and W{\"o}ckel, Achim and L{\"o}b, Sanja and Schlaiss, Tanja and Wulff, Christine and Diessner, Joachim}, title = {Evaluating a novel 3D printed model for simulating Large Loop Excision of the Transformation Zone (LLETZ)}, series = {3D Printing in Medicine}, volume = {8}, journal = {3D Printing in Medicine}, doi = {10.1186/s41205-022-00143-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313356}, year = {2022}, abstract = {Background Electrosurgical excisions are common procedures for treating cervical dysplasia and are often seen as minor surgeries. Yet, thorough training of this intervention is required, as there are considerable consequences of inadequate resections, e.g. preterm birth, the risk of recurrence, injuries and many more. Unfortunately, there is a lack of sufficiently validated possibilities of simulating electrosurgeries, which focus on high fidelity and patient safety. Methods A novel 3D printed simulator for examination and electrosurgical treatment of dysplastic areas of the cervix was compared with a conventional simulator. Sixty medical students experienced a seminar about cervical dysplasia. Group A underwent the seminar with the conventional and Group B with the novel simulator. After a theoretical introduction, the students were randomly assigned by picking a ticket from a box and went on to perform the hands-on training with their respective simulator. Each student first obtained colposcopic examination training. Then he or she performed five electrosurgical excisions (each). This was assessed with a validated score, to visualize their learning curve. Furthermore, adequate and inadequate resections and contacts between electrosurgical loop and vagina or speculum were counted. Both groups also assessed the seminar and their simulator with 18 questions (Likert-scales, 1-10, 1 = strongly agree / very good, 10 = strongly disagree / very bad). Group B additionally assessed the novel simulator with four questions (similar Likert-scales, 1-10). Results Nine of 18 questions showed statistically significant differences favoring Group B (p < 0.05). Group B also achieved more adequate R0-resections and less contacts between electrosurgical loop and vagina or speculum. The learning curves of the performed resections favored the novel simulator of Group B without statistically significant differences. The four questions focusing on certain aspects of the novel simulator indicate high appreciation of the students with a mean score of 1.6 points. Conclusion The presented novel simulator shows several advantages compared to the existing model. Thus, novice gynecologists can be supported with a higher quality of simulation to improve their training and thereby patient safety.}, language = {en} } @article{KieselBeyersKaliszetal.2022, author = {Kiesel, Matthias and Beyers, Inga and Kalisz, Adam and W{\"o}ckel, Achim and Quenzer, Anne and Schlaiß, Tanja and Wulff, Christine and Diessner, Joachim}, title = {Evaluating the value of a 3D printed model for hands-on training of gynecological pelvic examination}, series = {3D Printing in Medicine}, volume = {8}, journal = {3D Printing in Medicine}, doi = {10.1186/s41205-022-00149-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313365}, year = {2022}, abstract = {Background Simulation in the field of gynecological pelvic examination with educational purposes holds great potential. In the current manuscript we evaluate a 3D printed model of the female pelvis, which improves practical teaching of the gynecological pelvic examination for medical staff. Methods We evaluated the benefit of a 3D printed model of the female pelvis (Pelvisio®) as part of a seminar ("skills training") for teaching gynecological examination to medical students. Each student was randomly assigned to Group A or B by picking a ticket from a box. Group A underwent the skills training without the 3D printed model. Group B experienced the same seminar with integration of the model. Both groups evaluated the seminar by answering five questions on Likert scales (1-10, 1 = "very little" or "very poor", 10 equals "very much" or "very good"). Additionally, both groups answered three multiple-choice questions concerning pelvic anatomy (Question 6 to 8). Finally, Group B evaluated the 3D printed model with ten questions (Question 9 to 18, Likert scales, 1-10). Results Two of five questions concerning the students' satisfaction with the seminar and their gained knowledge showed statistically significant better ratings in Group B (6.7 vs. 8.2 points and 8.1 vs. 8.9 points (p < 0.001 and p < 0.009). The other three questions showed no statistically significant differences between the traditional teaching setting vs. the 3D printed model (p < 0.411, p < 0.344 and p < 0.215, respectively). The overall mean score of Question 1 to 5 showed 8.4 points for Group B and 7.8 points for Group A (p < 0.001). All three multiple-choice questions, asking about female pelvic anatomy, were answered more often correctly by Group B (p < 0.001, p < 0.008 and p < 0.001, respectively). The mean score from the answers to Questions 9 to 18, only answered by Group B, showed a mean of 8.6 points, indicating, that the students approved of the model. Conclusion The presented 3D printed model Pelvisio® improves the education of female pelvic anatomy and examination for medical students. Hence, training this pivotal examination can be supported by a custom designed anatomical model tailored for interactive and explorative learning.}, language = {en} } @article{BekesLoebHolzheuetal.2019, author = {Bekes, Inga and L{\"o}b, Sanja and Holzheu, Iris and Janni, Wolfgang and Baumann, Lisa and W{\"o}ckel, Achim and Wulff, Christine}, title = {Nectin-2 in ovarian cancer: how is it expressed and what might be its functional role?}, series = {Cancer Science}, volume = {110}, journal = {Cancer Science}, number = {6}, doi = {10.1111/cas.13992}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202748}, pages = {1872- 1882}, year = {2019}, abstract = {Nectin-2 is an adhesion molecule that has been reported to play a role in tumor growth, metastasis and tumor angiogenesis. Herein, we investigated Nectin-2 in ovarian cancer patients and in cell culture. Tumor as well as peritoneal biopsies of 60 ovarian cancer patients and 22 controls were dual stained for Nectin-2 and CD31 using immunohistochemistry. Gene expression of Nectin-2 was quantified by real-time PCR and differences analyzed in relation to various tumor characteristics. In the serum of patients, vascular endothelial growth factor (VEGF) was quantified by ELISA. Effect of VEGF on Nectin-2 expression as well as permeability was investigated in HUVEC. In tumor biopsies, Nectin-2 protein was mainly localized in tumor cells, whereas in peritoneal biopsies, clear colocalization was found in the vasculature. T3 patients had a significantly higher percentage of positive lymph nodes and this correlated with survival. Nectin-2 was significantly upregulated in tumor biopsies in patients with lymph node metastasis and with residual tumor >1 cm after surgery. Nectin-2 expression was significantly suppressed in the peritoneal endothelium of patients associated with significantly increased VEGF serum levels. In cell culture, VEGF stimulation led to a significant downregulation of Nectin-2 which was reversed by VEGF-inhibition. In addition, Nectin-2 knockdown in endothelial cells was associated with significantly increased endothelial permeability. Nectin-2 expression in ovarian cancer may support tumor cell adhesion, leading to growth and lymph node metastasis. In addition, VEGF-induced Nectin-2 suppression in peritoneal endothelium may support an increase in vascular permeability leading to ascites production.}, language = {en} } @article{KieselBeyersKaliszetal.2022, author = {Kiesel, Matthias and Beyers, Inga and Kalisz, Adam and W{\"o}ckel, Achim and Herbert, Saskia-Laureen and Curtaz, Carolin and Diessner, Joachim and Joukhadar, Ralf and Wulff, Christine}, title = {Introducing a novel model for simulating large loop excision of the transformation zone (LLETZ) using 3D printing technique}, series = {Archives of Gynecology and Obstetrics}, volume = {305}, journal = {Archives of Gynecology and Obstetrics}, number = {3}, issn = {1432-0711}, doi = {10.1007/s00404-021-06209-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266739}, pages = {703-712}, year = {2022}, abstract = {Purpose Electrosurgery is the gold-standard procedure for the treatment of cervical dysplasia. The quality of the outcome depends on the accuracy of performance, which underlines the role of adequate training of surgeons, especially, as this procedure is often performed by novice surgeons. According to our knowledge, medical simulation has up until now lacked a model, which focuses on realistically simulating the treatment of cervical dysplasia with the concerning anatomy. Methods and Result In our work, we present a model created using 3D printing for holistically simulating diagnostic, as well as surgical interventions of the cervix, as realistically as possible. Conclusion This novel simulator is compared to an existing model and both are evaluated. By doing so, we aim to provide novice gynecologists with standardized and high-quality simulation models for practicing to improve their proficiency.}, language = {en} }