@unpublished{WangArrowsmithBoehnkeetal.2017, author = {Wang, Sunewang R. and Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Dellermann, Theresa and Dewhurst, Rian D. and Kelch, Hauke and Krummenacher, Ivo and Mattock, James D. and M{\"u}ssig, Jonas H. and Thiess, Torsten and Vargas, Alfredo and Zhang, Jiji}, title = {Engineering a Small HOMO-LUMO Gap and Intramolecular B-B Hydroarylation by Diborene/Anthracene Orbital Intercalation}, series = {Angewandte Chemie, International Edition}, volume = {56}, journal = {Angewandte Chemie, International Edition}, number = {27}, doi = {10.1002/anie.201704063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148126}, pages = {8009-8013}, year = {2017}, abstract = {The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) (6) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C\(_{14}\)) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO-LUMO gap (HLG) and ultimately an unprecedented anthryl B-B bond hydroarylation. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV-vis absorption spectrum (THF, λ\(_{onset}\) = 788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B-B and C\(^1\)-H bonds of 8 were cleaved to give the cyclic 1,9-diboraanthracene 9.}, language = {en} }