@article{BousquetAntoBachertetal.2021, author = {Bousquet, Jean and Anto, Josep M. and Bachert, Claus and Haahtela, Tari and Zuberbier, Torsten and Czarlewski, Wienczyslawa and Bedbrook, Anna and Bosnic-Anticevich, Sinthia and Walter Canonica, G. and Cardona, Victoria and Costa, Elisio and Cruz, Alvaro A. and Erhola, Marina and Fokkens, Wytske J. and Fonseca, Joao A. and Illario, Maddalena and Ivancevich, Juan-Carlos and Jutel, Marek and Klimek, Ludger and Kuna, Piotr and Kvedariene, Violeta and Le, LTT and Larenas-Linnemann, D{\´e}sir{\´e}e E. and Laune, Daniel and Louren{\c{c}}o, Olga M. and Mel{\´e}n, Erik and Mullol, Joaquim and Niedoszytko, Marek and Odemyr, Mika{\"e}la and Okamoto, Yoshitaka and Papadopoulos, Nikos G. and Patella, Vincenzo and Pfaar, Oliver and Pham-Thi, Nh{\^a}n and Rolland, Christine and Samolinski, Boleslaw and Sheikh, Aziz and Sofiev, Mikhail and Suppli Ulrik, Charlotte and Todo-Bom, Ana and Tomazic, Peter-Valentin and Toppila-Salmi, Sanna and Tsiligianni, Ioanna and Valiulis, Arunas and Valovirta, Erkka and Ventura, Maria-Teresa and Walker, Samantha and Williams, Sian and Yorgancioglu, Arzu and Agache, Ioana and Akdis, Cezmi A. and Almeida, Rute and Ansotegui, Ignacio J. and Annesi-Maesano, Isabella and Arnavielhe, Sylvie and Basaga{\~n}a, Xavier and D. Bateman, Eric and B{\´e}dard, Annabelle and Bedolla-Barajas, Martin and Becker, Sven and Bennoor, Kazi S. and Benveniste, Samuel and Bergmann, Karl C. and Bewick, Michael and Bialek, Slawomir and E. Billo, Nils and Bindslev-Jensen, Carsten and Bjermer, Leif and Blain, Hubert and Bonini, Matteo and Bonniaud, Philippe and Bosse, Isabelle and Bouchard, Jacques and Boulet, Louis-Philippe and Bourret, Rodolphe and Boussery, Koen and Braido, Fluvio and Briedis, Vitalis and Briggs, Andrew and Brightling, Christopher E. and Brozek, Jan and Brusselle, Guy and Brussino, Luisa and Buhl, Roland and Buonaiuto, Roland and Calderon, Moises A. and Camargos, Paulo and Camuzat, Thierry and Caraballo, Luis and Carriazo, Ana-Maria and Carr, Warner and Cartier, Christine and Casale, Thomas and Cecchi, Lorenzo and Cepeda Sarabia, Alfonso M. and H. Chavannes, Niels and Chkhartishvili, Ekaterine and Chu, Derek K. and Cingi, Cemal and Correia de Sousa, Jaime and Costa, David J. and Courbis, Anne-Lise and Custovic, Adnan and Cvetkosvki, Biljana and D'Amato, Gennaro and da Silva, Jane and Dantas, Carina and Dokic, Dejan and Dauvilliers, Yves and De Feo, Giulia and De Vries, Govert and Devillier, Philippe and Di Capua, Stefania and Dray, Gerard and Dubakiene, Ruta and Durham, Stephen R. and Dykewicz, Mark and Ebisawa, Motohiro and Gaga, Mina and El-Gamal, Yehia and Heffler, Enrico and Emuzyte, Regina and Farrell, John and Fauquert, Jean-Luc and Fiocchi, Alessandro and Fink-Wagner, Antje and Fontaine, Jean-Fran{\c{c}}ois and Fuentes Perez, Jos{\´e} M. and Gemicioğlu, Bilun and Gamkrelidze, Amiran and Garcia-Aymerich, Judith and Gevaert, Philippe and Gomez, Ren{\´e} Maximiliano and Gonz{\´a}lez Diaz, Sandra and Gotua, Maia and Guldemond, Nick A. and Guzm{\´a}n, Maria-Antonieta and Hajjam, Jawad and Huerta Villalobos, Yunuen R. and Humbert, Marc and Iaccarino, Guido and Ierodiakonou, Despo and Iinuma, Tomohisa and Jassem, Ewa and Joos, Guy and Jung, Ki-Suck and Kaidashev, Igor and Kalayci, Omer and Kardas, Przemyslaw and Keil, Thomas and Khaitov, Musa and Khaltaev, Nikolai and Kleine-Tebbe, Jorg and Kouznetsov, Rostislav and Kowalski, Marek L. and Kritikos, Vicky and Kull, Inger and La Grutta, Stefania and Leonardini, Lisa and Ljungberg, Henrik and Lieberman, Philip and Lipworth, Brian and Lodrup Carlsen, Karin C. and Lopes-Pereira, Catarina and Loureiro, Claudia C. and Louis, Renaud and Mair, Alpana and Mahboub, Bassam and Makris, Micha{\"e}l and Malva, Joao and Manning, Patrick and Marshall, Gailen D. and Masjedi, Mohamed R. and Maspero, Jorge F. and Carreiro-Martins, Pedro and Makela, Mika and Mathieu-Dupas, Eve and Maurer, Marcus and De Manuel Keenoy, Esteban and Melo-Gomes, Elisabete and Meltzer, Eli O. and Menditto, Enrica and Mercier, Jacques and Micheli, Yann and Miculinic, Neven and Mihaltan, Florin and Milenkovic, Branislava and Mitsias, Dimitirios I. and Moda, Giuliana and Mogica-Martinez, Maria-Dolores and Mohammad, Yousser and Montefort, Steve and Monti, Ricardo and Morais-Almeida, Mario and M{\"o}sges, Ralph and M{\"u}nter, Lars and Muraro, Antonella and Murray, Ruth and Naclerio, Robert and Napoli, Luigi and Namazova-Baranova, Leyla and Neffen, Hugo and Nekam, Kristoff and Neou, Angelo and Nordlund, Bj{\"o}rn and Novellino, Ettore and Nyembue, Dieudonn{\´e} and O'Hehir, Robyn and Ohta, Ken and Okubo, Kimi and Onorato, Gabrielle L. and Orlando, Valentina and Ouedraogo, Solange and Palamarchuk, Julia and Pali-Sch{\"o}ll, Isabella and Panzner, Peter and Park, Hae-Sim and Passalacqua, Gianni and P{\´e}pin, Jean-Louis and Paulino, Ema and Pawankar, Ruby and Phillips, Jim and Picard, Robert and Pinnock, Hilary and Plavec, Davor and Popov, Todor A. and Portejoie, Fabienne and Price, David and Prokopakis, Emmanuel P. and Psarros, Fotis and Pugin, Benoit and Puggioni, Francesca and Quinones-Delgado, Pablo and Raciborski, Filip and Rajabian-S{\"o}derlund, Rojin and Regateiro, Frederico S. and Reitsma, Sietze and Rivero-Yeverino, Daniela and Roberts, Graham and Roche, Nicolas and Rodriguez-Zagal, Erendira and Rolland, Christine and Roller-Wirnsberger, Regina E. and Rosario, Nelson and Romano, Antonino and Rottem, Menachem and Ryan, Dermot and Salim{\"a}ki, Johanna and Sanchez-Borges, Mario M. and Sastre, Joaquin and Scadding, Glenis K. and Scheire, Sophie and Schmid-Grendelmeier, Peter and Sch{\"u}nemann, Holger J. and Sarquis Serpa, Faradiba and Shamji, Mohamed and Sisul, Juan-Carlos and Sofiev, Mikhail and Sol{\´e}, Dirceu and Somekh, David and Sooronbaev, Talant and Sova, Milan and Spertini, Fran{\c{c}}ois and Spranger, Otto and Stellato, Cristiana and Stelmach, Rafael and Thibaudon, Michel and To, Teresa and Toumi, Mondher and Usmani, Omar and Valero, Antonio A. and Valenta, Rudolph and Valentin-Rostan, Marylin and Pereira, Marilyn Urrutia and van der Kleij, Rianne and Van Eerd, Michiel and Vandenplas, Olivier and Vasankari, Tuula and Vaz Carneiro, Antonio and Vezzani, Giorgio and Viart, Fr{\´e}d{\´e}ric and Viegi, Giovanni and Wallace, Dana and Wagenmann, Martin and Wang, De Yun and Waserman, Susan and Wickman, Magnus and Williams, Dennis M. and Wong, Gary and Wroczynski, Piotr and Yiallouros, Panayiotis K. and Yusuf, Osman M. and Zar, Heather J. and Zeng, St{\´e}phane and Zernotti, Mario E. and Zhang, Luo and Shan Zhong, Nan and Zidarn, Mihaela}, title = {ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice}, series = {Allergy}, volume = {76}, journal = {Allergy}, number = {1}, doi = {10.1111/all.14422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228339}, pages = {168 -- 190}, year = {2021}, abstract = {Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.}, language = {en} } @article{WernerLueckerathSchmidetal.2016, author = {Werner, R. A. and L{\"u}ckerath, K. and Schmid, J. S. and Higuchi, T. and Kreissl, M. C. and Grelle, I. and Reiners, C. and Buck, A. K. and Lapa, C.}, title = {Thyroglobulin fluctuations in patients with iodine-refractory differentiated thyroid carcinoma on lenvatinib treatment - initial experience}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep28081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147407}, pages = {28081}, year = {2016}, abstract = {Tyrosine kinase inhibitors (TKI) have shown clinical effectiveness in iodine-refractory differentiated thyroid cancer (DTC). The corresponding role of serum thyroglobulin (Tg) in iodine-refractory DTC has not been investigated yet. 9 patients (3 female, 61 ± 8y) with progressive iodine-refractory DTC starting on lenvatinib were considered. Tumor restaging was performed every 2-3 months including contrast-enhanced computed tomography (CT, RECIST 1.1). Serum Tg was measured and compared to imaging findings. After treatment initiation, serum Tg levels dropped in all patients with a median reduction of 86.2\%. During long-term follow-up (median, 25.2 months), fluctuations in Tg could be observed in 8/9 subjects. According to RECIST, 6/9 subjects achieved a partial response or stable disease with the remaining 3/9 experiencing progressive disease (2/3 with Tg levels rising above baseline). All of the patients with disease progression presented with a preceding continuous rise in serum Tg, whereas tumor marker oscillations in the subjects with controlled disease were only intermittent. Initiation of lenvatinib in iodine-refractory DTC patients is associated with a significant reduction in serum Tg levels as a marker of treatment response. In the course of treatment, transient Tg oscillations are a frequent phenomenon that may not necessarily reflect morphologic tumor progression.}, language = {en} } @article{WernerWeichHiguchietal.2017, author = {Werner, Rudolf A. and Weich, Alexander and Higuchi, Takahiro and Schmid, Jan S. and Schirbel, Andreas and Lassmann, Michael and Wild, Vanessa and Rudelius, Martina and Kudlich, Theodor and Herrmann, Ken and Scheurlen, Michael and Buck, Andreas K. and Kropf, Saskia and Wester, Hans-J{\"u}rgen and Lapa, Constantin}, title = {Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors - a Triple Tracer Comparative Approach}, series = {Theranostics}, volume = {7}, journal = {Theranostics}, number = {6}, doi = {10.7150/thno.18754}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158008}, pages = {1489-1498}, year = {2017}, abstract = {C-X-C motif chemokine receptor 4 (CXCR4) and somatostatin receptors (SSTR) are overexpressed in gastro-entero-pancreatic neuroendocrine tumors (GEP-NET). In this study, we aimed to elucidate the feasibility of non-invasive CXCR4 positron emission tomography/computed tomography (PET/CT) imaging in GEP-NET patients using [\(^{68}\)Ga]Pentixafor in comparison to \(^{68}\)Ga-DOTA-D-Phe-Tyr3-octreotide ([\(^{68}\)Ga]DOTATOC) and \(^{18}\)F-fluorodeoxyglucose ([\(^{18}\)F]FDG). Twelve patients with histologically proven GEP-NET (3xG1, 4xG2, 5xG3) underwent [\(^{68}\)Ga]DOTATOC, [\(^{18}\)F]FDG, and [\(^{68}\)Ga]Pentixafor PET/CT for staging and planning of the therapeutic management. Scans were analyzed on a patient as well as on a lesion basis and compared to immunohistochemical staining patterns of CXCR4 and somatostatin receptors SSTR2a and SSTR5. [\(^{68}\)Ga]Pentixafor visualized tumor lesions in 6/12 subjects, whereas [\(^{18}\)F]FDG revealed sites of disease in 10/12 and [\(^{68}\)Ga]DOTATOC in 11/12 patients, respectively. Regarding sensitivity, SSTR-directed PET was the superior imaging modality in all G1 and G2 NET. CXCR4-directed PET was negative in all G1 NET. In contrast, 50\% of G2 and 80\% of G3 patients exhibited [\(^{68}\)Ga]Pentixafor-positive tumor lesions. Whereas CXCR4 seems to play only a limited role in detecting well-differentiated NET, increasing receptor expression could be non-invasively observed with increasing tumor grade. Thus, [\(^{68}\)Ga]Pentixafor PET/CT might serve as non-invasive read-out for evaluating the possibility of CXCR4-directed endoradiotherapy in advanced dedifferentiated SSTR-negative tumors.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{LudwigSchmidMarreetal.1991, author = {Ludwig, B. and Schmid, A. and Marre, R. and Hacker, J{\"o}rg}, title = {Cloning, genetic analysis and nucleotide sequence of a determinant coding for a 19 kd peptidoglycan-associated protein (Ppl) of Legionella pneumophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59721}, year = {1991}, abstract = {A genomic library of Legionello pneumophihz, the causative agent of Legionnaires disease in humans, was constructed in Escherichill coli K-12, and the recombinant clones were screened by immuno-colony blots with im antiserum raised against heat-killed L. pneumophilo. Twenty-three clones coding for a LegioneUa-specific protein of 19 kDa were isolated. The 19-kDa protein, which represents an outer membrane protein, was found tobe associated with the peptidoglycan layer bothin L. pneumophilo andin the recombinant E. coli clones. This was shown by electrophoresis and Western immunoblot analysis of bacterial cell membrane fractions witb a monospecific polyclonal 19-kDa protein-specific antiserum. Tbe protein was termed peptidoglycan-associated protein of L. pneumophilo (Ppl). The corresponding genetic determinant, ppl, was subcloned on a 1.8-kb Clol fragment. DNA sequence studies revealed that two open reading frames, pplA and pplB, coding for putative proteins of 18~9 and 16.8 kDa, respectively, were located on the Clol fragment. Exonuclease 111 digestion studies confirmed tbat pplA is the gene coding for the peptidoglycan.;.associated 19-kDa protein of L. pneumophilo. The amino acid sequence of PpiA exhibits a high degree of homology to the sequences of the Pal Iipoproteins of E. coli K-12 and liaemophilus injluenvze.}, subject = {Infektionsbiologie}, language = {en} } @article{BarresSchmidSendtneretal.1993, author = {Barres, B. A. and Schmid, R. and Sendtner, Michael and Raff, Martin C.}, title = {Multiple extracellular signals are required for long-term oligodendrocyte survival}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42644}, year = {1993}, abstract = {We showed previously that oligodendrocytes and their precursors require continuous signalling by protein trophic factors to avoid programmed cell death in culture. Here we show that three classes of such trophic factors promote oligodendrocyte survival in vitro: (1) insulin and insulin-like growth factors (IGFs), (2) neurotrophins, particularly neurotrophin-3 (NT -3), and (3) ciliary-neurotrophic factor (CNTF), leukemia inhibitory factor (LIF) and interleukin 6 (IL-6). A single factor, or combinations of factors within the same class, promote only short-term survival of oligodendrocytes and their precursors, while combinations of factors from different classes promote survival additively. Long-term survival of oligodendrocytes in vitro requires at least one factor from each class, suggesting that multiple signals may be required for long-term oligodendrocyte survival in vivo. We also show that CNTF promotes oligodendrocyte survival in vivo, that platelet-derived growth factor (PDGF) can promote the survival of oligodendrocyte precursors in vitro by acting on a novel, very high affinity PDGF receptor, and that, in addition to its effect on survival, NT-3 is a potent mitogen for oligodendrocyte precursor cells.}, language = {en} } @article{WernerSchmidMueggeetal.2015, author = {Werner, R.A. and Schmid, J.S. and Muegge, D.O. and L{\"u}ckerath, K. and Higuchi, T. and H{\"a}nscheid, H. and Grelle, I. and Reiners, C. and Herrmann, K. and Buck, A.K. and Lapa, C.}, title = {Prognostic value of serum tumor markers in medullary thyroid cancer patients undergoing vandetanib treatment}, series = {Medicine}, volume = {94}, journal = {Medicine}, number = {45}, doi = {10.1097/MD.0000000000002016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145154}, pages = {e2016}, year = {2015}, abstract = {Tyrosine kinase inhibitors (TKIs) such as vandetanib have shown clinical effectiveness in advanced medullary thyroid cancer (MTC). During TKI treatment, fluctuations in the tumor markers carcinoembryonic antigen (CEA) and calcitonin (CTN) are frequently observed. Their role for treatment monitoring and the decision-making process has not been fully elucidated yet. Twenty-one patients (male, 16, female, 5; mean age, 49±13 years) with progressive MTC receiving vandetanib (300mg orally per day) were considered. Tumor restaging was performed every 3 months including contrast-enhanced computed tomography (CT). Response was assessed according to recent criteria (Response Evaluation Criteria in Solid Tumors, RECIST 1.1). Additionally, CEA and CTN were measured at the day of CT imaging and alterations observed in tumor markers were compared to respective imaging findings (partial response, PR; stable disease, SD; progressive disease, PD). During long-term follow-up (510±350 days [range, 97-1140 days]), CTN and CEA levels initially dropped in 71.4\% and 61.9\% of the patients followed by fluctuations in serum marker levels. A rise in CTN ≥39.5\% between 2 subsequent measurements (defined by ROC analysis) had a sensitivity of 70.6\% and a specificity of 83.2\% in predicting PD with an accuracy of 82.0\% (area under the curve (AUC), 0.76). Oscillations in CEA levels were not predictive for PD. Whereas tumor marker fluctuations in MTC patients undergoing TKI treatment are a frequent phenomenon, a significant rise in CTN ≥40\% turns out to as an early indicator of tumor progression.}, language = {en} } @article{KleinBarthelsJoheetal.2020, author = {Klein, Philipp and Barthels, Fabian and Johe, Patrick and Wagner, Annika and Tenzer, Stefan and Distler, Ute and Le, Thien Anh and Schmid, Paul and Engel, Volker and Engels, Bernd and Hellmich, Ute A. and Opatz, Till and Schirmeister, Tanja}, title = {Naphthoquinones as covalent reversible inhibitors of cysteine proteases — studies on inhibition mechanism and kinetics}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {9}, issn = {1420-3049}, doi = {10.3390/molecules25092064}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203791}, year = {2020}, abstract = {The facile synthesis and detailed investigation of a class of highly potent protease inhibitors based on 1,4-naphthoquinones with a dipeptidic recognition motif (HN-l-Phe-l-Leu-OR) in the 2-position and an electron-withdrawing group (EWG) in the 3-position is presented. One of the compound representatives, namely the acid with EWG = CN and with R = H proved to be a highly potent rhodesain inhibitor with nanomolar affinity. The respective benzyl ester (R = Bn) was found to be hydrolyzed by the target enzyme itself yielding the free acid. Detailed kinetic and mass spectrometry studies revealed a reversible covalent binding mode. Theoretical calculations with different density functionals (DFT) as well as wavefunction-based approaches were performed to elucidate the mode of action.}, language = {en} }