@article{AdeyemoSiren1992, author = {Adeyemo, M. and Sir{\´e}n, Anna-Leena}, title = {Cardio-respiratory changes and mortality in the conscious rat induced by (+)- and (±)- anatoxin-a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63027}, year = {1992}, abstract = {0. M. ADEYEMO and A.-L. SIREN. Cardio-respiratory changes and mortality in the conscious rat induced by ( + )- and ( ± )-anatoxin-a. Toxicon 30, 899-905, 1992.-Anatoxin-a (AnTx-a) isapotent nicotinic cholinergic receptor agonist. The relative potencies of the ( + )-AnTx-a and the racemic mixture ( ± )-AnTxa were investigated in the conscious rat by comparing their effects on mean arterial blood pressure (BP), heart rate (HR), blood oxygen and carbon dioxide pressures (p02 and pC02, respective1y), acid-base balance (pH) and mortality. The present experiments show that while both forms of AnTx-a produce dose-dependent increases in BP and decreases in HR, ( + )-AnTx-a is about IO-fo1d morepotent than the optically inactive isomer. ( + )-AnTx-a was also 6-fo1d more potent than ( ± )-AnTx-a in produclog severe hypoxemia, and more than 4-fold as potent as the (±}-AnTx-a in producing significant hypercapnia accompanied with severe acidosis. The approximate median Iethai dose (Ln so) of ( + )-AnTx-a was about 5-fold less than that of ( ± )-AnTx-a. We conclude that ( + )-AnTx-a is more potent than the ( ± )-AnTx-a racemic mixture in causing detrimental cardio-respiratory changes and therefore increased mortality in the rat.}, subject = {Neurobiologie}, language = {en} } @article{AdeyemoShapiraTombaccinietal.1991, author = {Adeyemo, O. M. and Shapira, S. and Tombaccini, D. and Pollard, H. and Feuerstein, G. and Sir{\´e}n, Anna-Leena}, title = {A goldfish model for evaluation of the neurotoxicit of \(\omega\)-conotoxin GVIA and screening of monoclonal antibodies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63087}, year = {1991}, abstract = {A Goldfish Model for Evaluation of the Neurotaxicity of \(\omega\)-Conotoxin GVI A and Screening of Monoclonal Antibodies. ADEYEMO, 0. M .. SHAPIRA, S., TOMBACCINI, D., POLLARD, H. 8 .• FEUERSTEIN, G .. AND SIREN, A-L. ( 1991 ). Toxicol. App/. Pharmaco/. 108, 489-496. The neurotoxicity of \(\omega\)-conotoxin (\(\omega\)-CgTx), a potent neuronal voltage-sensitive calcium channel blocker, was measured using a new bioassay. \(\omega\)-CgTx was administered intraperitoneally (ip) to goldfish weighing approximately 1.6 g, and dose-related changes were observed over a 2-hr period. \(\omega\)CgTx induced time- and dose-dependent abnormal swimming behavior (ASB) and mortality. The antitoxin activity of the antiborlies was investigated in vivo by either ( l) preincubation of the antibody with w-CgTx at 4°C overnight, or (2) pretreatment with antibody, 30 min before \(\omega\)CgTx injection in a 10:1 antibody/\(\omega\)-CgTx molar ratio. The LD50 dose of \(\omega\)-CgTx in goldfish was 5 nmol/kg ip, and preincubation of monoclonal antibody (50 nmol/kg ip) with \(\omega\)-CgTx (5 nmol/kg ip) significantly (p < 0.05) reduced mortality. ASB, and toxicity time. The antitoxin activity of the monoclonal antiborlies evidenced in the goldfish bioassay was further tested in the conscious rat. In the rat, the increases in mean arterial pressure and heart rate induced by \(\omega\)-CgTx (0.03 nmol/rat icv) were significantly (p < 0.02 and p < 0.0 l, respectively) attenuated by preincubation of the toxin with the antibody (0.3 nmol/rat). We conclude that the goldfish bioassay provides a simple. accurate, and inexpensive in vivo model for the study of the toxicity of \(\omega\)CgTx}, subject = {Neurobiologie}, language = {en} }