@phdthesis{Karikari2022, author = {Karikari, Akua Afriyie}, title = {Alpha Synuclein Specific T Lymphocytes Promote Neurodegeneration in the A53T-α-synuclein Parkinson's Disease Mouse Model}, doi = {10.25972/OPUS-18308}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-183080}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Parkinson's disease (PD), which is the most common motor neurodegenerative disorder has attracted a tremendous amount of research advancement amid the challenges of the lack of an appropriate model that summate all the features of the human disease. Nevertheless, an aspect of the disease that is yet to be fully elucidated is the role of the immune system particularly the adaptive arm in the pathogenesis of PD. The focus of this study therefore was to characterize the contribution of lymphocytes in PD using the AAV1/2-A53T-α-synuclein mouse model of the disease that encodes for human mutated A53T-α-synuclein. This model was suitable for this research because it reflects more faithfully the molecular pathology underlying the human disease by exhibition of insoluble α-synuclein containing Lewy-like protein aggregates as compared to the more classical toxin models used in PD research. The outcome of this study showed that stereotaxic delivery of pathogenic α-synuclein via a viral vector into the substantia nigra engender the invasion of activated CD4+ and CD8+ T lymphocytes in the brain. The invasion of activated T cells in the brain especially in the substantia nigra then results in enhanced microglial activation and the disintegration of dopaminergic neurons. In addition, it was also discovered that CD4+ T cells augmented dopaminergic cell death to a greater extent than CD8+ T cells although; axonal degeneration occurred relatively independent from T cells contribution. The ex vivo and in vitro, experiments also indicated that the T cells were not only activated but they were specific to the mutated human α-synuclein antigen. As a result, they demonstrated selectivity in inducing more cell death to primary hippocampal neurons transduced with AAV1/2-A53T-α-synuclein vector than neurons with empty viral vector infection. The mechanism of T cell induced neuronal cell loss could not be attributed to the presence of cytokines neither was it mediated through MHC I and II. On the whole, this research has established that the presence of pathogenic α-synuclein in the substantia nigra has the potential to trigger immune responses that involve the transmigration of adaptive immune cells into the brain. The infiltration of the T cells consequently has a detrimental effect on the survival of dopaminergic neurons and the progression of the disease}, subject = {Parkinson-Krankheit}, language = {en} }