@article{MarquardtSolimandoKerscheretal.2021, author = {Marquardt, Andr{\´e} and Solimando, Antonio Giovanni and Kerscher, Alexander and Bittrich, Max and Kalogirou, Charis and K{\"u}bler, Hubert and Rosenwald, Andreas and Bargou, Ralf and Kollmannsberger, Philip and Schilling, Bastian and Meierjohann, Svenja and Krebs, Markus}, title = {Subgroup-Independent Mapping of Renal Cell Carcinoma — Machine Learning Reveals Prognostic Mitochondrial Gene Signature Beyond Histopathologic Boundaries}, series = {Frontiers in Oncology}, volume = {11}, journal = {Frontiers in Oncology}, issn = {2234-943X}, doi = {10.3389/fonc.2021.621278}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232107}, year = {2021}, abstract = {Background: Renal cell carcinoma (RCC) is divided into three major histopathologic groups—clear cell (ccRCC), papillary (pRCC) and chromophobe RCC (chRCC). We performed a comprehensive re-analysis of publicly available RCC datasets from the TCGA (The Cancer Genome Atlas) database, thereby combining samples from all three subgroups, for an exploratory transcriptome profiling of RCC subgroups. Materials and Methods: We used FPKM (fragments per kilobase per million) files derived from the ccRCC, pRCC and chRCC cohorts of the TCGA database, representing transcriptomic data of 891 patients. Using principal component analysis, we visualized datasets as t-SNE plot for cluster detection. Clusters were characterized by machine learning, resulting gene signatures were validated by correlation analyses in the TCGA dataset and three external datasets (ICGC RECA-EU, CPTAC-3-Kidney, and GSE157256). Results: Many RCC samples co-clustered according to histopathology. However, a substantial number of samples clustered independently from histopathologic origin (mixed subgroup)—demonstrating divergence between histopathology and transcriptomic data. Further analyses of mixed subgroup via machine learning revealed a predominant mitochondrial gene signature—a trait previously known for chRCC—across all histopathologic subgroups. Additionally, ccRCC samples from mixed subgroup presented an inverse correlation of mitochondrial and angiogenesis-related genes in the TCGA and in three external validation cohorts. Moreover, mixed subgroup affiliation was associated with a highly significant shorter overall survival for patients with ccRCC—and a highly significant longer overall survival for chRCC patients. Conclusions: Pan-RCC clustering according to RNA-sequencing data revealed a distinct histology-independent subgroup characterized by strengthened mitochondrial and weakened angiogenesis-related gene signatures. Moreover, affiliation to mixed subgroup went along with a significantly shorter overall survival for ccRCC and a longer overall survival for chRCC patients. Further research could offer a therapy stratification by specifically addressing the mitochondrial metabolism of such tumors and its microenvironment.}, language = {en} } @article{MarquardtKollmannsbergerKrebsetal.2022, author = {Marquardt, Andr{\´e} and Kollmannsberger, Philip and Krebs, Markus and Argentiero, Antonella and Knott, Markus and Solimando, Antonio Giovanni and Kerscher, Alexander Georg}, title = {Visual clustering of transcriptomic data from primary and metastatic tumors — dependencies and novel pitfalls}, series = {Genes}, volume = {13}, journal = {Genes}, number = {8}, issn = {2073-4425}, doi = {10.3390/genes13081335}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281872}, year = {2022}, abstract = {Personalized oncology is a rapidly evolving area and offers cancer patients therapy options that are more specific than ever. However, there is still a lack of understanding regarding transcriptomic similarities or differences of metastases and corresponding primary sites. Applying two unsupervised dimension reduction methods (t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP)) on three datasets of metastases (n = 682 samples) with three different data transformations (unprocessed, log10 as well as log10 + 1 transformed values), we visualized potential underlying clusters. Additionally, we analyzed two datasets (n = 616 samples) containing metastases and primary tumors of one entity, to point out potential familiarities. Using these methods, no tight link between the site of resection and cluster formation outcome could be demonstrated, or for datasets consisting of solely metastasis or mixed datasets. Instead, dimension reduction methods and data transformation significantly impacted visual clustering results. Our findings strongly suggest data transformation to be considered as another key element in the interpretation of visual clustering approaches along with initialization and different parameters. Furthermore, the results highlight the need for a more thorough examination of parameters used in the analysis of clusters.}, language = {en} }