@article{HolzschuhDormannTscharntkeetal.2013, author = {Holzschuh, Andrea and Dormann, Carsten F. and Tscharntke, Teja and Steffan-Dewenter, Ingolf}, title = {Mass-flowering crops enhance wild bee abundance}, series = {Oecologia}, volume = {172}, journal = {Oecologia}, number = {2}, doi = {dx.doi.org/10.1007/s00442-012-2515-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126852}, pages = {447-484}, year = {2013}, abstract = {Although agricultural habitats can provide enormous amounts of food resources for pollinator species, links between agricultural and (semi-)natural habitats through dispersal and foraging movements have hardly been studied. In 67 study sites, we assessed the interactions between mass-flowering oilseed rape fields and semi-natural grasslands at different spatial scales, and their effects on the number of brood cells of a solitary cavity-nesting bee. The probability that the bee Osmia bicornis colonized trap nests in oilseed rape fields increased from 12 to 59 \% when grassland was nearby, compared to fields isolated from grassland. In grasslands, the number of brood cells of O. bicornis in trap nests was 55 \% higher when adjacent to oilseed rape compared to isolated grasslands. The percentage of oilseed rape pollen in the larval food was higher in oilseed rape fields and grasslands adjacent to oilseed rape than in isolated grasslands. In both oilseed rape fields and grasslands, the number of brood cells was positively correlated with the percentage of oilseed rape pollen in the larval food. We show that mass-flowering agricultural habitats—even when they are intensively managed—can strongly enhance the abundance of a solitary bee species nesting in nearby semi-natural habitats. Our results suggest that positive effects of agricultural habitats have been underestimated and might be very common (at least) for generalist species in landscapes consisting of a mixture of agricultural and semi-natural habitats. These effects might also have—so far overlooked—implications for interspecific competition and mutualistic interactions in semi-natural habitats.}, language = {en} } @article{HolzschuhDormannTscharntkeetal.2013, author = {Holzschuh, Andrea and Dormann, Carsten F. and Tscharntke, Teja and Steffan-Dewenter, Ingolf}, title = {Mass-flowering crops enhance wild bee abundance}, series = {Oecologia}, volume = {172}, journal = {Oecologia}, number = {2}, doi = {10.1007/s00442-012-2515-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132149}, pages = {477-484}, year = {2013}, abstract = {Although agricultural habitats can provide enormous amounts of food resources for pollinator species, links between agricultural and (semi-)natural habitats through dispersal and foraging movements have hardly been studied. In 67 study sites, we assessed the interactions between mass-flowering oilseed rape fields and semi-natural grasslands at different spatial scales, and their effects on the number of brood cells of a solitary cavity-nesting bee. The probability that the bee Osmia bicornis colonized trap nests in oilseed rape fields increased from 12 to 59 \% when grassland was nearby, compared to fields isolated from grassland. In grasslands, the number of brood cells of O. bicornis in trap nests was 55 \% higher when adjacent to oilseed rape compared to isolated grasslands. The percentage of oilseed rape pollen in the larval food was higher in oilseed rape fields and grasslands adjacent to oilseed rape than in isolated grasslands. In both oilseed rape fields and grasslands, the number of brood cells was positively correlated with the percentage of oilseed rape pollen in the larval food. We show that mass-flowering agricultural habitats—even when they are intensively managed—can strongly enhance the abundance of a solitary bee species nesting in nearby semi-natural habitats. Our results suggest that positive effects of agricultural habitats have been underestimated and might be very common (at least) for generalist species in landscapes consisting of a mixture of agricultural and semi-natural habitats. These effects might also have—so far overlooked—implications for interspecific competition and mutualistic interactions in semi-natural habitats.}, language = {en} } @article{KleijnWinfreeBartomeusetal.2015, author = {Kleijn, David and Winfree, Rachael and Bartomeus, Ignasi and Carvalheiro, Lu{\´i}sa G. and Henry, Mickael and Isaacs, Rufus and Klein, Alexandra-Maria and Kremen, Claire and M'Gonigle, Leithen K. and Rader, Romina and Ricketts, Taylor H. and Williams, Neal M. and Adamson, Nancy Lee and Ascher, John S. and B{\´a}ldi, Andr{\´a}s and Bat{\´a}ry, P{\´e}ter and Benjamin, Faye and Biesmeijer, Jacobus C. and Blitzer, Eleanor J. and Bommarco, Riccardo and Brand, Mariette R. and Bretagnolle, Vincent and Button, Lindsey and Cariveau, Daniel P. and Chifflet, R{\´e}my and Colville, Jonathan F. and Danforth, Bryan N. and Elle, Elizabeth and Garratt, Michael P. D. and Herzog, Felix and Holzschuh, Andrea and Howlett, Brad G. and Jauker, Frank and Jha, Shalene and Knop, Eva and Krewenka, Kristin M. and Le F{\´e}on, Violette and Mandelik, Yael and May, Emily A. and Park, Mia G. and Pisanty, Gideon and Reemer, Menno and Riedinger, Verena and Rollin, Orianne and Rundl{\"o}f, Maj and Sardi{\~n}as, Hillary S. and Scheper, Jeroen and Sciligo, Amber R. and Smith, Henrik G. and Steffan-Dewenter, Ingolf and Thorp, Robbin and Tscharntke, Teja and Verhulst, Jort and Viana, Blandina F. and Vaissi{\`e}re, Bernard E. and Veldtman, Ruan and Ward, Kimiora L. and Westphal, Catrin and Potts, Simon G.}, title = {Delivery of crop pollination services is an insufficient argument for wild pollinator conservation}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7414}, doi = {10.1038/ncomms8414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151879}, year = {2015}, abstract = {There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost- effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost- effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.}, language = {en} }