@article{LewerentzHoffmannSarmentoCabral2021, author = {Lewerentz, Anne and Hoffmann, Markus and Sarmento Cabral, Juliano}, title = {Depth diversity gradients of macrophytes: Shape, drivers, and recent shifts}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {20}, doi = {10.1002/ece3.8089}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260280}, pages = {13830-13845}, year = {2021}, abstract = {Investigating diversity gradients helps to understand biodiversity drivers and threats. However, one diversity gradient is rarely assessed, namely how plant species distribute along the depth gradient of lakes. Here, we provide the first comprehensive characterization of depth diversity gradient (DDG) of alpha, beta, and gamma species richness of submerged macrophytes across multiple lakes. We characterize the DDG for additive richness components (alpha, beta, gamma), assess environmental drivers, and address temporal change over recent years. We take advantage of yet the largest dataset of macrophyte occurrence along lake depth (274 depth transects across 28 deep lakes) as well as of physiochemical measurements (12 deep lakes from 2006 to 2017 across Bavaria), provided publicly online by the Bavarian State Office for the Environment. We found a high variability in DDG shapes across the study lakes. The DDGs for alpha and gamma richness are predominantly hump-shaped, while beta richness shows a decreasing DDG. Generalized additive mixed-effect models indicate that the depth of the maximum richness (Dmax) is influenced by light quality, light quantity, and layering depth, whereas the respective maximum alpha richness within the depth gradient (Rmax) is significantly influenced by lake area only. Most observed DDGs seem generally stable over recent years. However, for single lakes we found significant linear trends for Rmax and Dmax going into different directions. The observed hump-shaped DDGs agree with three competing hypotheses: the mid-domain effect, the mean-disturbance hypothesis, and the mean-productivity hypothesis. The DDG amplitude seems driven by lake area (thus following known species-area relationships), whereas skewness depends on physiochemical factors, mainly water transparency and layering depth. Our results provide insights for conservation strategies and for mechanistic frameworks to disentangle competing explanatory hypotheses for the DDG.}, language = {en} } @phdthesis{Lewerentz2022, author = {Lewerentz, Anne F.}, title = {Spatiotemporal dynamics of freshwater macrophytes in Bavarian lakes under environmental change}, doi = {10.25972/OPUS-28770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287700}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Macrophytes are key components of freshwater ecosystems because they provide habitat, food, and improve the water quality. Macrophyte are vulnerable to environmental change as their physiological processes depend on changing environmental factors, which themselves vary within a geographical region and along lake depth. Their spatial distribution is not well understood and their importance is publicly little-known. In this thesis, I have investigated the spatiotemporal dynamics of freshwater macrophytes in Bavarian lakes to understand their diversity pattern along different scales and to predict and communicate potential consequences of global change on their richness. In the introduction (Chapter 1), I provide an overview of the current scientific knowledge of the species richness patterns of macrophytes in freshwater lakes, the influences of climate and land-use change on macrophyte growth, and different modelling approaches of macrophytes. The main part of the thesis starts with a study about submerged and emergent macrophyte species richness in natural and artificial lakes of Bavaria (Chapter 2). By analysing publicly available monitoring data, I have found a higher species richness of submerged macrophytes in natural lakes than in artificial lakes. Furthermore, I showed that the richness of submerged species is better explained by physio-chemical lake parameters than the richness of emergent species. In Chapter 3, I considered that submerged macrophytes grow along a depth gradient that provides a sharp environmental gradient on a short spatial scale. This study is the first comparative assessment of the depth diversity gradient (DDG) of macrophytes. I have found a hump-shaped pattern of different diversity components. Generalised additive mixed-effect models indicate that the shape of the DDG is influenced mainly by light quality, light quantity, layering depth, and lake area. I could not identify a general trend of the DDG within recent years, but single lakes show trends leading into different directions. In Chapter 4, I used a mechanistic eco-physiological model to explore changes in the distribution of macrophyte species richness under different scenarios of environmental conditions across lakes and with depths. I could replicate the hump-shaped pattern of potential species richness along depth. Rising temperature leads to increased species richness in all lake types, and depths. The effect of turbidity and nutrient change depends on depth and lake type. Traits that characterise "loser species" under increased turbidity and nutrients are a high light consumption and a high sensibility to disturbances. "Winner species" can be identified by a high biomass production. In Chapter 5, I discuss the image problem of macrophytes. Unawareness, ignorance, and the poor accessibility of macrophytes can lead to conflicts of use. I assumed that an increased engagement and education could counteract this. Because computer games can transfer knowledge interactively while creating an immersive experience, I present in the chapter an interactive single-player game for children. Finally, I discuss the findings of this thesis in the light of their implications for ecological theory, their implications for conservation, and future research ideas (Chapter 6). The findings help to understand the regional distribution and the drivers of macrophyte species richness. By applying eco-physiological models, multiple environmental shaping factors for species richness were tested and scenarios of climate and land-use change were explored.}, subject = {{\"O}kologie}, language = {en} }