@article{RichterPolatLawrenzetal.2016, author = {Richter, Anne and Polat, B{\"u}lent and Lawrenz, Ingulf and Weick, Stefan and Sauer, Otto and Flentje, Michael and Mantel, Frederick}, title = {Initial results for patient setup verification using transperineal ultrasound and cone beam CT in external beam radiation therapy of prostate cancer}, series = {Radiation Oncology}, volume = {11}, journal = {Radiation Oncology}, number = {147}, doi = {10.1186/s13014-016-0722-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147677}, year = {2016}, abstract = {Evaluation of set up error detection by a transperineal ultrasound in comparison with a cone beam CT (CBCT) based system in external beam radiation therapy (EBRT) of prostate cancer. Methods: Setup verification was performed with transperineal ultrasound (TPUS) and CBCT for 10 patients treated with EBRT for prostate cancer. In total, 150 ultrasound and CBCT scans were acquired in rapid succession and analyzed for setup errors. The deviation between setup errors of the two modalities was evaluated separately for each dimension. Results: A moderate correlation in lateral, vertical and longitudinal direction was observed comparing the setup errors. Mean differences between TPUS and CBCT were (-2.7 ± 2.3) mm, (3.0 ± 2.4) mm and (3.2 ± 2.7) mm in lateral, vertical and longitudinal direction, respectively. The mean Euclidean difference between TPUS and CBCT was (6.0 ± 3.1) mm. Differences up to 19.2 mm were observed between the two imaging modalities. Discrepancies between TPUS and CBCT of at least 5 mm occurred in 58 \% of monitored treatment sessions. Conclusion: Setup differences between TPUS and CBCT are 6 mm on average. Although the correlation of the setup errors determined by the two different image modalities is rather week, the combination of setup verification by CBCT and intrafraction motion monitoring by TPUS imaging can use the benefits of both imaging modalities.}, language = {en} } @article{TamihardjaRazinskasExneretal.2021, author = {Tamihardja, J{\"o}rg and Razinskas, Gary and Exner, Florian and Richter, Anne and Kessler, Patrick and Weick, Stefan and Kraft, Johannes and Mantel, Frederick and Flentje, Michael and Polat, B{\"u}lent}, title = {Comparison of treatment plans for hypofractionated high-dose prostate cancer radiotherapy using the Varian Halcyon and the Elekta Synergy platforms}, series = {Journal of Applied Clinical Medical Physics}, volume = {22}, journal = {Journal of Applied Clinical Medical Physics}, number = {9}, doi = {10.1002/acm2.13380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260722}, pages = {262-270}, year = {2021}, abstract = {Purpose To compare radiotherapy plans between an O-ring and a conventional C-arm linac for hypofractionated high-dose prostate radiotherapy in terms of plan quality, dose distribution, and quality assurance in a multi-vendor environment. Methods Twenty prostate cancer treatment plans were irradiated on the O-ring Varian Halcyon linac and were re-optimized for the C-arm Elekta Synergy Agility linac. Dose-volume histogram metrics for target coverage and organ at risk dose, quality assurance, and monitor units were retrospectively compared. Patient-specific quality assurance with ion chamber measurements, gamma index analysis, and portal dosimetry was performed using the Varian Portal Dosimetry system and the ArcCHECK® phantom (Sun Nuclear Corporation). Prostate-only radiotherapy was delivered with simultaneous integrated boost (SIB) volumetric modulated arc therapy (VMAT) in 20 fractions of 2.5/3.0 Gy each. Results For both linacs, target coverage was excellent and plan quality comparable. Homogeneity in PTVBoost was high for Synergy as well as Halcyon with a mean homogeneity index of 0.07 ± 0.01 and 0.05 ± 0.01, respectively. Mean dose for the organs at risk rectum and bladder differed not significantly between the linacs but were higher for the femoral heads and penile bulb for Halcyon. Quality assurance showed no significant differences in terms of ArcCHECK gamma pass rates. Median pass rate for 3\%/2 mm was 99.3\% (96.7 to 99.8\%) for Synergy and 99.8\% (95.6 to 100\%) for Halcyon. Agreement between calculated and measured dose was high with a median deviation of -0.6\% (-1.7 to 0.8\%) for Synergy and 0.2\% (-0.6 to 2.3\%) for Halcyon. Monitor units were higher for the Halcyon by approximately 20\% (p < 0.001). Conclusion Hypofractionated high-dose prostate cancer SIB VMAT on the Halcyon system is feasible with comparable plan quality in reference to a standard C-arm Elekta Synergy linac.}, language = {en} } @article{TamihardjaCirsiKessleretal.2021, author = {Tamihardja, J{\"o}rg and Cirsi, Sinan and Kessler, Patrick and Razinskas, Gary and Exner, Florian and Richter, Anne and Polat, B{\"u}lent and Flentje, Michael}, title = {Cone beam CT-based dose accumulation and analysis of delivered dose to the dominant intraprostatic lesion in primary radiotherapy of prostate cancer}, series = {Radiation Oncology}, volume = {16}, journal = {Radiation Oncology}, doi = {10.1186/s13014-021-01933-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265656}, year = {2021}, abstract = {Background Evaluation of delivered dose to the dominant intraprostatic lesion (DIL) for moderately hypofractionated radiotherapy of prostate cancer by cone beam computed tomography (CBCT)-based dose accumulation and target coverage analysis. Methods Twenty-three patients with localized prostate cancer treated with moderately hypofractionated prostate radiotherapy with simultaneous integrated boost (SIB) between December 2016 and February 2020 were retrospectively analyzed. Included patients were required to have an identifiable DIL on bi-parametric planning magnetic resonance imaging (MRI). After import into the RayStation treatment planning system and application of a step-wise density override, the fractional doses were computed on each CBCT and were consecutively mapped onto the planning CT via a deformation vector field derived from deformable image registration. Fractional doses were accumulated for all CBCTs and interpolated for missing CBCTs, resulting in the delivered dose for PTV\(_{DIL}\), PTV\(_{Boost}\), PTV, and the organs at risk. The location of the index lesions was recorded according to the sector map of the Prostate Imaging Reporting and Data System (PIRADS) Version 2.1. Target coverage of the index lesions was evaluated and stratified for location. Results In total, 338 CBCTs were available for analysis. Dose accumulation target coverage of PTV\(_{DIL}\), PTV\(_{Boost}\), and PTV was excellent and no cases of underdosage in D\(_{Mean}\), D_95\%, D_02\%, and D_98\% could be detected. Delivered rectum D\(_{Mean}\) did not significantly differ from the planned dose. Bladder mean DMean was higher than planned with 19.4 ± 7.4 Gy versus 18.8 ± 7.5 Gy, p < 0.001. The penile bulb showed a decreased delivered mean DMean with 29.1 ± 14.0 Gy versus 29.8 ± 14.4 Gy, p < 0.001. Dorsal DILs, defined as DILs in the posterior medial peripheral zone of the prostate, showed a significantly lower delivered dose with a mean DMean difference of 2.2 Gy (95\% CI 1.3-3.1 Gy, p < 0.001) compared to ventral lesions. Conclusions CBCT-based dose accumulation showed an adequate delivered dose to the dominant intraprostatic lesion and organs at risk within planning limits. Cautious evaluation of the target coverage for index lesions adjacent to the rectum is warranted to avoid underdosage.}, language = {en} }