@article{RichterPolatLawrenzetal.2016, author = {Richter, Anne and Polat, B{\"u}lent and Lawrenz, Ingulf and Weick, Stefan and Sauer, Otto and Flentje, Michael and Mantel, Frederick}, title = {Initial results for patient setup verification using transperineal ultrasound and cone beam CT in external beam radiation therapy of prostate cancer}, series = {Radiation Oncology}, volume = {11}, journal = {Radiation Oncology}, number = {147}, doi = {10.1186/s13014-016-0722-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147677}, year = {2016}, abstract = {Evaluation of set up error detection by a transperineal ultrasound in comparison with a cone beam CT (CBCT) based system in external beam radiation therapy (EBRT) of prostate cancer. Methods: Setup verification was performed with transperineal ultrasound (TPUS) and CBCT for 10 patients treated with EBRT for prostate cancer. In total, 150 ultrasound and CBCT scans were acquired in rapid succession and analyzed for setup errors. The deviation between setup errors of the two modalities was evaluated separately for each dimension. Results: A moderate correlation in lateral, vertical and longitudinal direction was observed comparing the setup errors. Mean differences between TPUS and CBCT were (-2.7 ± 2.3) mm, (3.0 ± 2.4) mm and (3.2 ± 2.7) mm in lateral, vertical and longitudinal direction, respectively. The mean Euclidean difference between TPUS and CBCT was (6.0 ± 3.1) mm. Differences up to 19.2 mm were observed between the two imaging modalities. Discrepancies between TPUS and CBCT of at least 5 mm occurred in 58 \% of monitored treatment sessions. Conclusion: Setup differences between TPUS and CBCT are 6 mm on average. Although the correlation of the setup errors determined by the two different image modalities is rather week, the combination of setup verification by CBCT and intrafraction motion monitoring by TPUS imaging can use the benefits of both imaging modalities.}, language = {en} } @article{WeickBreuerRichteretal.2020, author = {Weick, Stefan and Breuer, Kathrin and Richter, Anne and Exner, Florian and Str{\"o}hle, Serge-Peer and Lutyj, Paul and Tamihardja, J{\"o}rg and Veldhoen, Simon and Flentje, Michael and Polat, B{\"u}lent}, title = {Non-rigid image registration of 4D-MRI data for improved delineation of moving tumors}, series = {BMC Medical Imaging}, volume = {20}, journal = {BMC Medical Imaging}, doi = {10.1186/s12880-020-00439-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229271}, year = {2020}, abstract = {Background To increase the image quality of end-expiratory and end-inspiratory phases of retrospective respiratory self-gated 4D MRI data sets using non-rigid image registration for improved target delineation of moving tumors. Methods End-expiratory and end-inspiratory phases of volunteer and patient 4D MRI data sets are used as targets for non-rigid image registration of all other phases using two different registration schemes: In the first, all phases are registered directly (dir-Reg) while next neighbors are successively registered until the target is reached in the second (nn-Reg). Resulting data sets are quantitatively compared using diaphragm and tumor sharpness and the coefficient of variation of regions of interest in the lung, liver, and heart. Qualitative assessment of the patient data regarding noise level, tumor delineation, and overall image quality was performed by blinded reading based on a 4 point Likert scale. Results The median coefficient of variation was lower for both registration schemes compared to the target. Median dir-Reg coefficient of variation of all ROIs was 5.6\% lower for expiration and 7.0\% lower for inspiration compared with nn-Reg. Statistical significant differences between the two schemes were found in all comparisons. Median sharpness in inspiration is lower compared to expiration sharpness in all cases. Registered data sets were rated better compared to the targets in all categories. Over all categories, mean expiration scores were 2.92 +/- 0.18 for the target, 3.19 +/- 0.22 for nn-Reg and 3.56 +/- 0.14 for dir-Reg and mean inspiration scores 2.25 +/- 0.12 for the target, 2.72 +/- 215 0.04 for nn-Reg and 3.78 +/- 0.04 for dir-Reg. Conclusions In this work, end-expiratory and inspiratory phases of a 4D MRI data sets are used as targets for non-rigid image registration of all other phases. It is qualitatively and quantitatively shown that image quality of the targets can be significantly enhanced leading to improved target delineation of moving tumors.}, language = {en} } @article{BliziotisKluijtmansTinneveltetal.2022, author = {Bliziotis, Nikolaos G. and Kluijtmans, Leo A. J. and Tinnevelt, Gerjen H. and Reel, Parminder and Reel, Smarti and Langton, Katharina and Robledo, Mercedes and Pamporaki, Christina and Pecori, Alessio and Van Kralingen, Josie and Tetti, Martina and Engelke, Udo F. H. and Erlic, Zoran and Engel, Jasper and Deutschbein, Timo and N{\"o}lting, Svenja and Prejbisz, Aleksander and Richter, Susan and Adamski, Jerzy and Januszewicz, Andrzej and Ceccato, Filippo and Scaroni, Carla and Dennedy, Michael C. and Williams, Tracy A. and Lenzini, Livia and Gimenez-Roqueplo, Anne-Paule and Davies, Eleanor and Fassnacht, Martin and Remde, Hanna and Eisenhofer, Graeme and Beuschlein, Felix and Kroiss, Matthias and Jefferson, Emily and Zennaro, Maria-Christina and Wevers, Ron A. and Jansen, Jeroen J. and Deinum, Jaap and Timmers, Henri J. L. M.}, title = {Preanalytical pitfalls in untargeted plasma nuclear magnetic resonance metabolomics of endocrine hypertension}, series = {Metabolites}, volume = {12}, journal = {Metabolites}, number = {8}, issn = {2218-1989}, doi = {10.3390/metabo12080679}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282930}, year = {2022}, abstract = {Despite considerable morbidity and mortality, numerous cases of endocrine hypertension (EHT) forms, including primary aldosteronism (PA), pheochromocytoma and functional paraganglioma (PPGL), and Cushing's syndrome (CS), remain undetected. We aimed to establish signatures for the different forms of EHT, investigate potentially confounding effects and establish unbiased disease biomarkers. Plasma samples were obtained from 13 biobanks across seven countries and analyzed using untargeted NMR metabolomics. We compared unstratified samples of 106 PHT patients to 231 EHT patients, including 104 PA, 94 PPGL and 33 CS patients. Spectra were subjected to a multivariate statistical comparison of PHT to EHT forms and the associated signatures were obtained. Three approaches were applied to investigate and correct confounding effects. Though we found signatures that could separate PHT from EHT forms, there were also key similarities with the signatures of sample center of origin and sample age. The study design restricted the applicability of the corrections employed. With the samples that were available, no biomarkers for PHT vs. EHT could be identified. The complexity of the confounding effects, evidenced by their robustness to correction approaches, highlighted the need for a consensus on how to deal with variabilities probably attributed to preanalytical factors in retrospective, multicenter metabolomics studies.}, language = {en} } @article{ViljurAbellaAdameketal.2022, author = {Viljur, Mari-Liis and Abella, Scott R. and Ad{\´a}mek, Martin and Alencar, Janderson Batista Rodrigues and Barber, Nicholas A. and Beudert, Burkhard and Burkle, Laura A. and Cagnolo, Luciano and Campos, Brent R. and Chao, Anne and Chergui, Brahim and Choi, Chang-Yong and Cleary, Daniel F. R. and Davis, Thomas Seth and Dechnik-V{\´a}zquez, Yanus A. and Downing, William M. and Fuentes-Ramirez, Andr{\´e}s and Gandhi, Kamal J. K. and Gehring, Catherine and Georgiev, Kostadin B. and Gimbutas, Mark and Gongalsky, Konstantin B. and Gorbunova, Anastasiya Y. and Greenberg, Cathryn H. and Hylander, Kristoffer and Jules, Erik S. and Korobushkin, Daniil I. and K{\"o}ster, Kajar and Kurth, Valerie and Lanham, Joseph Drew and Lazarina, Maria and Leverkus, Alexandro B. and Lindenmayer, David and Marra, Daniel Magnabosco and Mart{\´i}n-Pinto, Pablo and Meave, Jorge A. and Moretti, Marco and Nam, Hyun-Young and Obrist, Martin K. and Petanidou, Theodora and Pons, Pere and Potts, Simon G. and Rapoport, Irina B. and Rhoades, Paul R. and Richter, Clark and Saifutdinov, Ruslan A. and Sanders, Nathan J. and Santos, Xavier and Steel, Zachary and Tavella, Julia and Wendenburg, Clara and Wermelinger, Beat and Zaitsev, Andrey S. and Thorn, Simon}, title = {The effect of natural disturbances on forest biodiversity: an ecological synthesis}, series = {Biological Reviews}, volume = {97}, journal = {Biological Reviews}, number = {5}, doi = {10.1111/brv.12876}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287168}, pages = {1930 -- 1947}, year = {2022}, abstract = {Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55\% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the β-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.}, language = {en} } @article{BotheDeubelHesseetal.2019, author = {Bothe, Friederike and Deubel, Anne-Kathrin and Hesse, Eliane and Lotz, Benedict and Groll, J{\"u}rgen and Werner, Carsten and Richter, Wiltrud and Hagmann, Sebastien}, title = {Treatment of focal cartilage defects in minipigs with zonal chondrocyte/mesenchymal progenitor cell constructs}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {3}, issn = {1422-0067}, doi = {10.3390/ijms20030653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285118}, year = {2019}, abstract = {Despite advances in cartilage repair strategies, treatment of focal chondral lesions remains an important challenge to prevent osteoarthritis. Articular cartilage is organized into several layers and lack of zonal organization of current grafts is held responsible for insufficient biomechanical and biochemical quality of repair-tissue. The aim was to develop a zonal approach for cartilage regeneration to determine whether the outcome can be improved compared to a non-zonal strategy. Hydrogel-filled polycaprolactone (PCL)-constructs with a chondrocyte-seeded upper-layer deemed to induce hyaline cartilage and a mesenchymal stromal cell (MSC)-containing bottom-layer deemed to induce calcified cartilage were compared to chondrocyte-based non-zonal grafts in a minipig model. Grafts showed comparable hardness at implantation and did not cause visible signs of inflammation. After 6 months, X-ray microtomography (µCT)-analysis revealed significant bone-loss in both treatment groups compared to empty controls. PCL-enforcement and some hydrogel-remnants were retained in all defects, but most implants were pressed into the subchondral bone. Despite important heterogeneities, both treatments reached a significantly lower modified O'Driscoll-score compared to empty controls. Thus, PCL may have induced bone-erosion during joint loading and misplacement of grafts in vivo precluding adequate permanent orientation of zones compared to surrounding native cartilage.}, language = {en} } @article{KraftWeickBreueretal.2022, author = {Kraft, Johannes and Weick, Stefan and Breuer, Kathrin and Lutyj, Paul and Bratengeier, Klaus and Exner, Florian and Richter, Anne and Tamihardja, J{\"o}rg and Lisowski, Dominik and Polat, B{\"u}lent and Flentje, Michael}, title = {Treatment plan comparison for irradiation of multiple brain metastases with hippocampal avoidance whole brain radiotherapy and simultaneous integrated boost using the Varian Halcyon and the Elekta Synergy platforms}, series = {Radiation Oncology}, volume = {17}, journal = {Radiation Oncology}, doi = {10.1186/s13014-022-02156-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301221}, year = {2022}, abstract = {No abstract available.}, language = {en} } @article{ToussaintRichterManteletal.2016, author = {Toussaint, Andr{\´e} and Richter, Anne and Mantel, Frederick and Flickinger, John C. and Grills, Inga Siiner and Tyagi, Neelam and Sahgal, Arjun and Letourneau, Daniel and Sheehan, Jason P. and Schlesinger, David J. and Gerszten, Peter Carlos and Guckenberger, Matthias}, title = {Variability in spine radiosurgery treatment planning - results of an international multi-institutional study}, series = {Radiation Oncology}, volume = {11}, journal = {Radiation Oncology}, number = {57}, doi = {10.1186/s13014-016-0631-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146687}, year = {2016}, abstract = {Background The aim of this study was to quantify the variability in spinal radiosurgery (SRS) planning practices between five international institutions, all member of the Elekta Spine Radiosurgery Research Consortium. Methods Four institutions provided one representative patient case each consisting of the medical history, CT and MR imaging. A step-wise planning approach was used where, after each planning step a consensus was generated that formed the basis for the next planning step. This allowed independent analysis of all planning steps of CT-MR image registration, GTV definition, CTV definition, PTV definition and SRS treatment planning. In addition, each institution generated one additional SRS plan for each case based on intra-institutional image registration and contouring, independent of consensus results. Results Averaged over the four cases, image registration variability ranged between translational 1.1 mm and 2.4 mm and rotational 1.1° and 2.0° in all three directions. GTV delineation variability was 1.5 mm in axial and 1.6 mm in longitudinal direction averaged for the four cases. CTV delineation variability was 0.8 mm in axial and 1.2 mm in longitudinal direction. CTV-to-PTV margins ranged between 0 mm and 2 mm according to institutional protocol. Delineation variability was 1 mm in axial directions for the spinal cord. Average PTV coverage for a single fraction18 Gy prescription was 87 ± 5 \%; Dmin to the PTV was 7.5 ± 1.8 Gy averaged over all cases and institutions. Average Dmax to the PRV_SC (spinal cord + 1 mm) was 10.5 ± 1.6 Gy and the average Paddick conformity index was 0.69 ± 0.06. Conclusions Results of this study reflect the variability in current practice of spine radiosurgery in large and highly experienced academic centers. Despite close methodical agreement in the daily workflow, clinically significant variability in all steps of the treatment planning process was demonstrated. This may translate into differences in patient clinical outcome and highlights the need for consensus and established delineation and planning criteria.}, language = {en} }