@article{AppeltMenzelCubukovaGuentheretal.2017, author = {Appelt-Menzel, Antje and Cubukova, Alevtina and G{\"u}nther, Katharina and Edenhofer, Frank and Piontek, J{\"o}rg and Krause, Gerd and St{\"u}ber, Tanja and Walles, Heike and Neuhaus, Winfried and Metzger, Marco}, title = {Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells}, series = {Stem Cell Reports}, volume = {8}, journal = {Stem Cell Reports}, number = {4}, doi = {10.1016/j.stemcr.2017.02.021}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170982}, pages = {894-906}, year = {2017}, abstract = {In vitro models of the human blood-brain barrier (BBB) are highly desirable for drug development. This study aims to analyze a set of ten different BBB culture models based on primary cells, human induced pluripotent stem cells (hiPSCs), and multipotent fetal neural stem cells (fNSCs). We systematically investigated the impact of astrocytes, pericytes, and NSCs on hiPSC-derived BBB endothelial cell function and gene expression. The quadruple culture models, based on these four cell types, achieved BBB characteristics including transendothelial electrical resistance (TEER) up to 2,500 Ω cm\(^{2}\) and distinct upregulation of typical BBB genes. A complex in vivo-like tight junction (TJ) network was detected by freeze-fracture and transmission electron microscopy. Treatment with claudin-specific TJ modulators caused TEER decrease, confirming the relevant role of claudin subtypes for paracellular tightness. Drug permeability tests with reference substances were performed and confirmed the suitability of the models for drug transport studies.}, language = {en} } @article{SchwedhelmZdziebloAppeltMenzeletal.2019, author = {Schwedhelm, Ivo and Zdzieblo, Daniela and Appelt-Menzel, Antje and Berger, Constantin and Schmitz, Tobias and Schuldt, Bernhard and Franke, Andre and M{\"u}ller, Franz-Josef and Pless, Ole and Schwarz, Thomas and Wiedemann, Philipp and Walles, Heike and Hansmann, Jan}, title = {Automated real-time monitoring of human pluripotent stem cell aggregation in stirred tank reactors}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-48814-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202649}, pages = {12297}, year = {2019}, abstract = {The culture of human induced pluripotent stem cells (hiPSCs) at large scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Innovative monitoring options and emerging automated process control strategies allow for the necessary highly defined culture conditions. Next to standard process characteristics such as oxygen consumption, pH, and metabolite turnover, a reproducible and steady formation of hiPSC aggregates is vital for process scalability. In this regard, we developed a hiPSC-specific suspension culture unit consisting of a fully monitored CSTR system integrated into a custom-designed and fully automated incubator. As a step towards cost-effective hiPSC suspension culture and to pave the way for flexibility at a large scale, we constructed and utilized tailored miniature CSTRs that are largely made from three-dimensional (3D) printed polylactic acid (PLA) filament, which is a low-cost material used in fused deposition modelling. Further, the monitoring tool for hiPSC suspension cultures utilizes in situ microscopic imaging to visualize hiPSC aggregation in real-time to a statistically significant degree while omitting the need for time-intensive sampling. Suitability of our culture unit, especially concerning the developed hiPSC-specific CSTR system, was proven by demonstrating pluripotency of CSTR-cultured hiPSCs at RNA (including PluriTest) and protein level.}, language = {en} }