@article{ArgentieroSolimandoKrebsetal.2020, author = {Argentiero, Antonella and Solimando, Antonio Giovanni and Krebs, Markus and Leone, Patrizia and Susca, Nicola and Brunetti, Oronzo and Racanelli, Vito and Vacca, Angelo and Silvestris, Nicola}, title = {Anti-angiogenesis and immunotherapy: novel paradigms to envision tailored approaches in renal cell-carcinoma}, series = {Journal of Clinical Medicine}, volume = {9}, journal = {Journal of Clinical Medicine}, number = {5}, issn = {2077-0383}, doi = {10.3390/jcm9051594}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205846}, year = {2020}, abstract = {Although decision making strategy based on clinico-histopathological criteria is well established, renal cell carcinoma (RCC) represents a spectrum of biological ecosystems characterized by distinct genetic and molecular alterations, diverse clinical courses and potential specific therapeutic vulnerabilities. Given the plethora of drugs available, the subtype-tailored treatment to RCC subtype holds the potential to improve patient outcome, shrinking treatment-related morbidity and cost. The emerging knowledge of the molecular taxonomy of RCC is evolving, whilst the antiangiogenic and immunotherapy landscape maintains and reinforces their potential. Although several prognostic factors of survival in patients with RCC have been described, no reliable predictive biomarkers of treatment individual sensitivity or resistance have been identified. In this review, we summarize the available evidence able to prompt more precise and individualized patient selection in well-designed clinical trials, covering the unmet need of medical choices in the era of next-generation anti-angiogenesis and immunotherapy.}, language = {en} } @article{MarquardtKollmannsbergerKrebsetal.2022, author = {Marquardt, Andr{\´e} and Kollmannsberger, Philip and Krebs, Markus and Argentiero, Antonella and Knott, Markus and Solimando, Antonio Giovanni and Kerscher, Alexander Georg}, title = {Visual clustering of transcriptomic data from primary and metastatic tumors — dependencies and novel pitfalls}, series = {Genes}, volume = {13}, journal = {Genes}, number = {8}, issn = {2073-4425}, doi = {10.3390/genes13081335}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281872}, year = {2022}, abstract = {Personalized oncology is a rapidly evolving area and offers cancer patients therapy options that are more specific than ever. However, there is still a lack of understanding regarding transcriptomic similarities or differences of metastases and corresponding primary sites. Applying two unsupervised dimension reduction methods (t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP)) on three datasets of metastases (n = 682 samples) with three different data transformations (unprocessed, log10 as well as log10 + 1 transformed values), we visualized potential underlying clusters. Additionally, we analyzed two datasets (n = 616 samples) containing metastases and primary tumors of one entity, to point out potential familiarities. Using these methods, no tight link between the site of resection and cluster formation outcome could be demonstrated, or for datasets consisting of solely metastasis or mixed datasets. Instead, dimension reduction methods and data transformation significantly impacted visual clustering results. Our findings strongly suggest data transformation to be considered as another key element in the interpretation of visual clustering approaches along with initialization and different parameters. Furthermore, the results highlight the need for a more thorough examination of parameters used in the analysis of clusters.}, language = {en} } @article{SolimandoPalumboPragnelletal.2022, author = {Solimando, Antonio G. and Palumbo, Carmen and Pragnell, Mary Victoria and Bittrich, Max and Argentiero, Antonella and Krebs, Markus}, title = {Aplastic anemia as a roadmap for bone marrow failure: an overview and a clinical workflow}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms231911765}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290440}, year = {2022}, abstract = {In recent years, it has become increasingly apparent that bone marrow (BM) failures and myeloid malignancy predisposition syndromes are characterized by a wide phenotypic spectrum and that these diseases must be considered in the differential diagnosis of children and adults with unexplained hematopoiesis defects. Clinically, hypocellular BM failure still represents a challenge in pathobiology-guided treatment. There are three fundamental topics that emerged from our review of the existing data. An exogenous stressor, an immune defect, and a constitutional genetic defect fuel a vicious cycle of hematopoietic stem cells, immune niches, and stroma compartments. A wide phenotypic spectrum exists for inherited and acquired BM failures and predispositions to myeloid malignancies. In order to effectively manage patients, it is crucial to establish the right diagnosis. New theragnostic windows can be revealed by exploring BM failure pathomechanisms.}, language = {en} }