@article{JessenKressBaluapurietal.2020, author = {Jessen, Christina and Kreß, Julia K. C. and Baluapuri, Apoorva and Hufnagel, Anita and Schmitz, Werner and Kneitz, Susanne and Roth, Sabine and Marquardt, Andr{\´e} and Appenzeller, Silke and Ade, Casten P. and Glutsch, Valerie and Wobser, Marion and Friedmann-Angeli, Jos{\´e} Pedro and Mosteo, Laura and Goding, Colin R. and Schilling, Bastian and Geissinger, Eva and Wolf, Elmar and Meierjohann, Svenja}, title = {The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression}, series = {Oncogene}, volume = {39}, journal = {Oncogene}, issn = {0950-9232}, doi = {10.1038/s41388-020-01477-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235064}, pages = {6841-6855}, year = {2020}, abstract = {The transcription factor NRF2 is the major mediator of oxidative stress responses and is closely connected to therapy resistance in tumors harboring activating mutations in the NRF2 pathway. In melanoma, such mutations are rare, and it is unclear to what extent melanomas rely on NRF2. Here we show that NRF2 suppresses the activity of the melanocyte lineage marker MITF in melanoma, thereby reducing the expression of pigmentation markers. Intriguingly, we furthermore identified NRF2 as key regulator of immune-modulating genes, linking oxidative stress with the induction of cyclooxygenase 2 (COX2) in an ATF4-dependent manner. COX2 is critical for the secretion of prostaglandin E2 and was strongly induced by H\(_2\)O\(_2\) or TNFα only in presence of NRF2. Induction of MITF and depletion of COX2 and PGE2 were also observed in NRF2-deleted melanoma cells in vivo. Furthermore, genes corresponding to the innate immune response such as RSAD2 and IFIH1 were strongly elevated in absence of NRF2 and coincided with immune evasion parameters in human melanoma datasets. Even in vitro, NRF2 activation or prostaglandin E2 supplementation blunted the induction of the innate immune response in melanoma cells. Transcriptome analyses from lung adenocarcinomas indicate that the observed link between NRF2 and the innate immune response is not restricted to melanoma.}, language = {en} } @article{PattschullWalzGruendletal.2019, author = {Pattschull, Grit and Walz, Susanne and Gr{\"u}ndl, Marco and Schwab, Melissa and R{\"u}hl, Eva and Baluapuri, Apoorva and Cindric-Vranesic, Anita and Kneitz, Susanne and Wolf, Elmar and Ade, Carsten P. and Rosenwald, Andreas and von Eyss, Bj{\"o}rn and Gaubatz, Stefan}, title = {The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes}, series = {Cell Reports}, volume = {27}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2019.05.071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202039}, pages = {3533-3546}, year = {2019}, abstract = {YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.}, language = {en} }