@article{WenzArndtSamnick2022, author = {Wenz, Jan and Arndt, Felix and Samnick, Samuel}, title = {A new concept for the production of \(^{11}\)C-labelled radiotracers}, series = {EJNMMI Radiopharmacy and Chemistry}, volume = {7}, journal = {EJNMMI Radiopharmacy and Chemistry}, doi = {10.1186/s41181-022-00159-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300731}, year = {2022}, abstract = {Background The GMP-compliant production of radiopharmaceuticals has been performed using disposable units (cassettes) with a dedicated synthesis module. To expand this "plug 'n' synthesize" principle to a broader scope of modules we developed a pressure controlled setup that offers an alternative to the usual stepper motor controlled rotary valves. The new concept was successfully applied to the synthesis of N-methyl-[\(^{11}\)C]choline, L-S-methyl-[\(^{11}\)C]methionine and [11C]acetate. Results The target gas purification of cyclotron produced [\(^{11}\)C]CO\(_2\) and subsequent conversion to [\(^{11}\)C]MeI was carried out on a TRACERlab Fx C Pro module. The labelling reactions were controlled with a TRACERlab Fx FE module. With the presented modular principle we were able to produce N-methyl-[\(^{11}\)C]choline and L-S-methyl-[\(^{11}\)C]methionine by loading a reaction loop with neat N,N'-dimethylaminoethanol (DMAE) or an ethanol/water mixture of NaOH and L-homocysteine (L-HC), respectively and a subsequent reaction with [\(^{11}\)C]MeI. After 18 min N-methyl-[\(^{11}\)C]choline was isolated with 52\% decay corrected yield and a radiochemical purity of > 99\%. For L-S-methyl-[\(^{11}\)C]methionine the total reaction time was 19 min reaction, yielding 25\% of pure product (> 97\%). The reactor design was used as an exemplary model for the technically challenging [\(^{11}\)C]acetate synthesis. The disposable unit was filled with 1 mL MeMgCl (0.75 M) in tetrahydrofuran (THF) bevore [\(^{11}\)C]CO\(_2\) was passed through. After complete release of [\(^{11}\)C]CO\(_2\) the reaction mixture was quenched with water and guided through a series of ion exchangers (H\(^+\), Ag\(^+\) and OH\(^-\)). The product was retained on a strong anion exchanger, washed with water and finally extracted with saline. The product mixture was acidified and degassed to separate excess [\(^{11}\)C]CO\(_2\) before dispensing. Under these conditions the total reaction time was 18 ± 2 min and pure [\(^{11}\)C]acetate (n = 10) was isolated with a decay corrected yield of 51 ± 5\%. Conclusion Herein, we described a novel single use unit for the synthesis of carbon-11 labelled tracers for preclinical and clinical applications of N-methyl-[\(^{11}\)C]choline, L-S-methyl-[\(^{11}\)C]methionine and [11C]acetate.}, language = {en} } @article{LuekeHallerUtpateletal.2022, author = {L{\"u}ke, Florian and Haller, Florian and Utpatel, Kirsten and Krebs, Markus and Meidenbauer, Norbert and Scheiter, Alexander and Spoerl, Silvia and Heudobler, Daniel and Sparrer, Daniela and Kaiser, Ulrich and Keil, Felix and Schubart, Christoph and T{\"o}gel, Lars and Einhell, Sabine and Dietmaier, Wolfgang and Huss, Ralf and Dintner, Sebastian and Sommer, Sebastian and Jordan, Frank and Goebeler, Maria-Elisabeth and Metz, Michaela and Haake, Diana and Scheytt, Mithun and Gerhard-Hartmann, Elena and Maurus, Katja and Br{\"a}ndlein, Stephanie and Rosenwald, Andreas and Hartmann, Arndt and M{\"a}rkl, Bruno and Einsele, Hermann and Mackensen, Andreas and Herr, Wolfgang and Kunzmann, Volker and Bargou, Ralf and Beckmann, Matthias W. and Pukrop, Tobias and Trepel, Martin and Evert, Matthias and Claus, Rainer and Kerscher, Alexander}, title = {Identification of disparities in personalized cancer care — a joint approach of the German WERA consortium}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {20}, issn = {2072-6694}, doi = {10.3390/cancers14205040}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290311}, year = {2022}, abstract = {(1) Background: molecular tumor boards (MTBs) are crucial instruments for discussing and allocating targeted therapies to suitable cancer patients based on genetic findings. Currently, limited evidence is available regarding the regional impact and the outreach component of MTBs; (2) Methods: we analyzed MTB patient data from four neighboring Bavarian tertiary care oncology centers in W{\"u}rzburg, Erlangen, Regensburg, and Augsburg, together constituting the WERA Alliance. Absolute patient numbers and regional distribution across the WERA-wide catchment area were weighted with local population densities; (3) Results: the highest MTB patient numbers were found close to the four cancer centers. However, peaks in absolute patient numbers were also detected in more distant and rural areas. Moreover, weighting absolute numbers with local population density allowed for identifying so-called white spots—regions within our catchment that were relatively underrepresented in WERA MTBs; (4) Conclusions: investigating patient data from four neighboring cancer centers, we comprehensively assessed the regional impact of our MTBs. The results confirmed the success of existing collaborative structures with our regional partners. Additionally, our results help identifying potential white spots in providing precision oncology and help establishing a joint WERA-wide outreach strategy.}, language = {en} } @article{PinkawaAebersoldBoehmeretal.2021, author = {Pinkawa, Michael and Aebersold, Daniel M. and B{\"o}hmer, Dirk and Flentje, Michael and Ghadjar, Pirus and Schmidt-Hegemann, Nina-Sophie and H{\"o}cht, Stefan and H{\"o}lscher, Tobias and M{\"u}ller, Arndt-Christian and Niehoff, Peter and Sedlmayer, Felix and Wolf, Frank and Zamboglou, Constantinos and Zips, Daniel and Wiegel, Thomas}, title = {Radiotherapy in nodal oligorecurrent prostate cancer}, series = {Strahlentherapie und Onkologie}, volume = {197}, journal = {Strahlentherapie und Onkologie}, number = {7}, issn = {0179-7158}, doi = {10.1007/s00066-021-01778-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307763}, pages = {575-580}, year = {2021}, abstract = {Objective The current article encompasses a literature review and recommendations for radiotherapy in nodal oligorecurrent prostate cancer. Materials and methods A literature review focused on studies comparing metastasis-directed stereotactic ablative radiotherapy (SABR) vs. external elective nodal radiotherapy (ENRT) and studies analyzing recurrence patterns after local nodal treatment was performed. The DEGRO Prostate Cancer Expert Panel discussed the results and developed treatment recommendations. Results Metastasis-directed radiotherapy results in high local control (often > 90\% within a follow-up of 1-2 years) and can be used to improve progression-free survival or defer androgen deprivation therapy (ADT) according to prospective randomized phase II data. Distant progression after involved-node SABR only occurs within a few months in the majority of patients. ENRT improves metastases-free survival rates with increased toxicity in comparison to SABR according to retrospective comparative studies. The majority of nodal recurrences after initial local treatment of pelvic nodal metastasis are detected within the true pelvis and common iliac vessels. Conclusion ENRT with or without a boost should be preferred to SABR in pelvic nodal recurrences. In oligometastatic prostate cancer with distant (extrapelvic) nodal recurrences, SABR alone can be performed in selected cases. Application of additional systemic treatments should be based on current guidelines, with ADT as first-line treatment for hormone-sensitive prostate cancer. Only in carefully selected patients can radiotherapy be initially used without additional ADT outside of the current standard recommendations. Results of (randomized) prospective studies are needed for definitive recommendations.}, language = {en} }