@article{MengSendtnerSmith1995, author = {Meng, Li and Sendtner, Michael and Smith, Austin}, title = {Essential function of LIF receptor in motor neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34219}, year = {1995}, abstract = {D EVELOPME'iT and maintenance of the mammalian nervous system is dependent upon neurotrophic cytokines. One class of neurotrophic factor acts through rcccptor complexes involving the lowaffinity leukaemia inhibitor y faclor receptor subunit (LlF-R). Members of this fa mily of cytokines, such as ciliary neurotrophic factor (CNTF) and leukaemia inhibitory factor (LIF), have profound effects on the survival and maintenance of motor neurons, Recently it was reported that mice lacking LlF-R die shortly after birth unlike mice lacking CNTF or LIF which are viable. Here we describe histopathological analyses of lifr mutants tha t reveal a loss > 35\% of facia l motor neurons, 40\% of spinal motor neurons and 50\% of neurons in the nucleus ambiguus. These findings point to the existence of a ligand for LIF-R tha t is required for the normal development of motor neurons in both brainstem nuclei and spinal cord.}, language = {en} } @article{ScognamiglioCabezasWallscheidThieretal.2016, author = {Scognamiglio, Roberta and Cabezas-Wallscheid, Nina and Thier, Marc Christian and Altamura, Sandro and Reyes, Alejandro and Prendergast, {\´A}ine M. and Baumg{\"a}rtner, Daniel and Carnevalli, Larissa S. and Atzberger, Ann and Haas, Simon and von Paleske, Lisa and Boroviak, Thorsten and W{\"o}rsd{\"o}rfer, Philipp and Essers, Marieke A. G. and Kloz, Ulrich and Eisenman, Robert N. and Edenhofer, Frank and Bertone, Paul and Huber, Wolfgang and van der Hoeven, Franciscus and Smith, Austin and Trumpp, Andreas}, title = {Myc depletion induces a pluripotent dormant state mimicking diapause}, series = {Cell}, volume = {164}, journal = {Cell}, number = {4}, doi = {10.1016/j.cell.2015.12.033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190868}, pages = {668-680}, year = {2016}, abstract = {Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.}, language = {en} }