@article{TruebeHertleinMrochenetal.2019, author = {Tr{\"u}be, Patricia and Hertlein, Tobias and Mrochen, Daniel M. and Schulz, Daniel and Jorde, Ilka and Krause, Bettina and Zeun, Julia and Fischer, Stefan and Wolf, Silver A. and Walther, Birgit and Semmler, Torsten and Br{\"o}ker, Barbara M. and Ulrich, Rainer G. and Ohlsen, Knut and Holtfreter, Silva}, title = {Bringing together what belongs together: Optimizing murine infection models by using mouse-adapted Staphylococcus aureus strains}, series = {International Journal of Medical Microbiology}, volume = {309}, journal = {International Journal of Medical Microbiology}, doi = {10.1016/j.ijmm.2018.10.007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229081}, pages = {26-38}, year = {2019}, abstract = {Staphylococcus (S.) aureus is a leading cause of bacterial infection world-wide, and currently no vaccine is available for humans. Vaccine development relies heavily on clinically relevant infection models. However, the suitability of mice for S. aureus infection models has often been questioned, because experimental infection of mice with human-adapted S. aureus requires very high infection doses. Moreover, mice were not considered to be natural hosts of S. aureus. The latter has been disproven by our recent findings, showing that both laboratory mice, as well as wild small mammals including mice, voles, and shrews, are naturally colonized with S. aureus. Here, we investigated whether mouse-and vole-derived S. aureus strains show an enhanced virulence in mice as compared to the human-adapted strain Newman. Using a step-wise approach based on the bacterial genotype and in vitro assays for host adaptation, we selected the most promising candidates for murine infection models out of a total of 254 S. aureus isolates from laboratory mice as well as wild rodents and shrews. Four strains representing the clonal complexes (CC) 8, 49, and 88 (nā€‰=ā€‰2) were selected and compared to the human-adapted S. aureus strain Newman (CC8) in murine pneumonia and bacteremia models. Notably, a bank vole-derived CC49 strain, named DIP, was highly virulent in BALB/c mice in pneumonia and bacteremia models, whereas the other murine and vole strains showed virulence similar to or lower than that of Newman. At one tenth of the standard infection dose DIP induced disease severity, bacterial load and host cytokine and chemokine responses in the murine bacteremia model similar to that of Newman. In the pneumonia model, DIP was also more virulent than Newman but the effect was less pronounced. Whole genome sequencing data analysis identified a pore-forming toxin gene, lukF-PV(P83)/lukM, in DIP but not in the other tested S. aureus isolates. To conclude, the mouse-adapted S. aureus strain DIP allows a significant reduction of the inoculation dose in mice and is hence a promising tool to develop clinically more relevant infection models.}, language = {en} } @article{KuehlhornRathSchmoeckeletal.2013, author = {K{\"u}hlhorn, Franziska and Rath, Matthias and Schmoeckel, Katrin and Cziupka, Katharina and Nguyen, Huu Hung and Hildebrandt, Petra and H{\"u}nig, Thomas and Sparwasser, Tim and Huehn, Jochen and P{\"o}tschke, Christian and Br{\"o}ker, Barbara M.}, title = {\(Foxp3^+\) Regulatory T Cells Are Required for Recovery from Severe Sepsis}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0065109}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130940}, pages = {e65109}, year = {2013}, abstract = {The role of regulatory T cells (Tregs) in bacterial sepsis remains controversial because antibody-mediated depletion experiments gave conflicting results. We employed DEREG mice (DEpletion of REGulatory T cells) and a caecal ligation and puncture model to elucidate the role of \(CD4^+Foxp3^+\) Tregs in sepsis. In DEREG mice natural Tregs can be visualized easily and selectively depleted by diphtheria toxin because the animals express the diphtheria toxin receptor and enhanced green fluorescent protein as a fusion protein under the control of the foxp3 locus. We confirmed rapid Treg-activation and an increased ratio of Tregs to Teffs in sepsis. Nevertheless, 24 h after sepsis induction, Treg-depleted and control mice showed equally strong inflammation, immune cell immigration into the peritoneum and bacterial dissemination. During the first 36 h of disease survival was not influenced by Treg-depletion. Later, however, only Treg-competent animals recovered from the insult. We conclude that the suppressive capacity of Tregs is not sufficient to control overwhelming inflammation and early mortality, but is a prerequisite for the recovery from severe sepsis.}, language = {en} } @article{SelleHertleinOesterreichetal.2016, author = {Selle, Martina and Hertlein, Tobias and Oesterreich, Babett and Klemm, Theresa and Kloppot, Peggy and M{\"u}ller, Elke and Ehricht, Ralf and Stentzel, Sebastian and Br{\"o}ker, Barbara M. and Engelmann, Susanne and Ohlsen, Knut}, title = {Global antibody response to Staphylococcus aureus live-cell vaccination}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep24754}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181245}, year = {2016}, abstract = {The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration.}, language = {en} }