@article{FerreiraGamazonAlEjehetal.2019, author = {Ferreira, Manuel A. and Gamazon, Eric R. and Al-Ejeh, Fares and Aittom{\"a}ki, Kristiina and Andrulis, Irene L. and Anton-Culver, Hoda and Arason, Adalgeir and Arndt, Volker and Aronson, Kristan J. and Arun, Banu K. and Asseryanis, Ella and Azzollini, Jacopo and Balma{\~n}a, Judith and Barnes, Daniel R. and Barrowdale, Daniel and Beckmann, Matthias W. and Behrens, Sabine and Benitez, Javier and Bermisheva, Marina and Bialkowska, Katarzyna and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Bolla, Manjeet K. and Borg, Ake and Brauch, Hiltrud and Brenner, Hermann and Broeks, Annegien and Burwinkel, Barbara and Cald{\´e}s, Trinidad and Caligo, Maria A. and Campa, Daniele and Campbell, Ian and Canzian, Federico and Carter, Jonathan and Carter, Brian D. and Castelao, Jose E. and Chang-Claude, Jenny and Chanock, Stephen J. and Christiansen, Hans and Chung, Wendy K. and Claes, Kathleen B. M. and Clarke, Christine L. and Couch, Fergus J. and Cox, Angela and Cross, Simon S. and Czene, Kamila and Daly, Mary B. and de la Hoya, Miguel and Dennis, Joe and Devilee, Peter and Diez, Orland and D{\"o}rk, Thilo and Dunning, Alison M. and Dwek, Miriam and Eccles, Diana M. and Ejlertsen, Bent and Ellberg, Carolina and Engel, Christoph and Eriksson, Mikael and Fasching, Peter A. and Fletcher, Olivia and Flyger, Henrik and Friedman, Eitan and Frost, Debra and Gabrielson, Marike and Gago-Dominguez, Manuela and Ganz, Patricia A. and Gapstur, Susan M. and Garber, Judy and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Glendon, Gord and Godwin, Andrew K. and Goldberg, Mark S. and Goldgar, David E. and Gonz{\´a}lez-Neira, Anna and Greene, Mark H. and Gronwald, Jacek and Guen{\´e}l, Pascal and Haimann, Christopher A. and Hall, Per and Hamann, Ute and He, Wei and Heyworth, Jane and Hogervorst, Frans B. L. and Hollestelle, Antoinette and Hoover, Robert N. and Hopper, John L. and Hulick, Peter J. and Humphreys, Keith and Imyanitov, Evgeny N. and Isaacs, Claudine and Jakimovska, Milena and Jakubowska, Anna and James, Paul A. and Janavicius, Ramunas and Jankowitz, Rachel C. and John, Esther M. and Johnson, Nichola and Joseph, Vijai and Karlan, Beth Y. and Khusnutdinova, Elza and Kiiski, Johanna I. and Ko, Yon-Dschun and Jones, Michael E. and Konstantopoulou, Irene and Kristensen, Vessela N. and Laitman, Yael and Lambrechts, Diether and Lazaro, Conxi and Leslie, Goska and Lester, Jenny and Lesueur, Fabienne and Lindstr{\"o}m, Sara and Long, Jirong and Loud, Jennifer T. and Lubiński, Jan and Makalic, Enes and Mannermaa, Arto and Manoochehri, Mehdi and Margolin, Sara and Maurer, Tabea and Mavroudis, Dimitrios and McGuffog, Lesley and Meindl, Alfons and Menon, Usha and Michailidou, Kyriaki and Miller, Austin and Montagna, Marco and Moreno, Fernando and Moserle, Lidia and Mulligan, Anna Marie and Nathanson, Katherine L. and Neuhausen, Susan L. and Nevanlinna, Heli and Nevelsteen, Ines and Nielsen, Finn C. and Nikitina-Zake, Liene and Nussbaum, Robert L. and Offit, Kenneth and Olah, Edith and Olopade, Olufunmilayo I. and Olsson, H{\aa}kan and Osorio, Ana and Papp, Janos and Park-Simon, Tjoung-Won and Parsons, Michael T. and Pedersen, Inge Sokilde and Peixoto, Ana and Peterlongo, Paolo and Pharaoh, Paul D. P. and Plaseska-Karanfilska, Dijana and Poppe, Bruce and Presneau, Nadege and Radice, Paolo and Rantala, Johanna and Rennert, Gad and Risch, Harvey A. and Saloustros, Emmanouil and Sanden, Kristin and Sawyer, Elinor J. and Schmidt, Marjanka K. and Schmutzler, Rita K. and Sharma, Priyanka and Shu, Xiao-Ou and Simard, Jaques and Singer, Christian F. and Soucy, Penny and Southey, Melissa C. and Spinelli, John J. and Spurdle, Amanda B. and Stone, Jennifer and Swerdlow, Anthony J. and Tapper, William J. and Taylor, Jack A. and Teixeira, Manuel R. and Terry, Mary Beth and Teul{\´e}, Alex and Thomassen, Mads and Th{\"o}ne, Kathrin and Thull, Darcy L. and Tischkowitz, Marc and Toland, Amanda E. and Torres, Diana and Truong, Th{\´e}r{\`e}se and Tung, Nadine and Vachon, Celine M. and van Asperen, Christi J. and van den Ouweland, Ans M. W. and van Rensburg, Elizabeth J. and Vega, Ana and Viel, Alexandra and Wang, Qin and Wappenschmidt, Barbara and Weitzel, Jeffrey N. and Wendt, Camilla and Winqvist, Robert and Yang, Xiaohong R. and Yannoukakos, Drakoulis and Ziogas, Argyrios and Kraft, Peter and Antoniou, Antonis C. and Zheng, Wei and Easton, Douglas F. and Milne, Roger L. and Beesley, Jonathan and Chenevix-Trench, Georgia}, title = {Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, organization = {EMBRACE Collaborators, GC-HBOC Study Collaborators, GEMO Study Collaborators, ABCTB Investigators, HEBON Investigators, BCFR Investigators}, doi = {10.1038/s41467-018-08053-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228024}, year = {2019}, abstract = {Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.}, language = {en} } @article{SonnenscheinvanderVoortArendsdeJongsteetal.2014, author = {Sonnenschein-van der Voort, Agnes M. M. and Arends, Lidia R. and de Jongste, Johan C. and Annesi-Maesano, Isabella and Arshad, S. Hasan and Barros, Henrique and Basterrechea, Mikel and Bisgaard, Hans and Chatzi, Leda and Corpeleijn, Eva and Correia, Sofia and Craig, Leone C. and Devereux, Graham and Dogaru, Cristian and Dostal, Miroslav and Duchen, Karel and Eggesb{\o}, Merete and van der Ent, C. Kors and Fantini, Maria P. and Forastiere, Francesco and Frey, Urs and Gehring, Ulrike and Gori, Davide and van der Gugten, Anne C. and Hanke, Wojciech and Henderson, A. John and Heude, Barbara and I{\~n}iguez, Carmen and Inskip, Hazel M. and Keil, Thomas and Kelleher, Cecily C. and Kogevinas, Manolis and Kreiner-M{\o}ller, Eskil and Kuehni, Claudia E. and K{\"u}pers, Leanne K. and Lancz, Kinga and Larsen, Pernille S. and Lau, Susanne and Ludvigsson, Johnny and Mommers, Monique and Andersen, Anne-Marie Nybo and Palkovicova, Lubica and Pike, Katherine C. and Pizzi, Constanza and Polanska, Kinga and Porta, Daniela and Richiardi, Lorenzo and Roberts, Graham and Schmidt, Anne and Sram, Radim J. and Sunyer, Jordi and Thijs, Carel and Torrent, Maties and Viljoen, Karien and Wijga, Alet H. and Vrijheid, Martine and Jaddoe, Vincent W. V. and Duijts, Liesbeth}, title = {Preterm birth, infant weight gain, and childhood asthma risk: A meta-analysis of 147,000 European children}, series = {The Journal of Allergy and Clinical Immunology}, volume = {133}, journal = {The Journal of Allergy and Clinical Immunology}, number = {5}, doi = {10.1016/j.jaci.2013.12.1082}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120714}, pages = {1317-29}, year = {2014}, abstract = {Background Preterm birth, low birth weight, and infant catch-up growth seem associated with an increased risk of respiratory diseases in later life, but individual studies showed conflicting results. Objectives We performed an individual participant data meta-analysis for 147,252 children of 31 birth cohort studies to determine the associations of birth and infant growth characteristics with the risks of preschool wheezing (1-4 years) and school-age asthma (5-10 years). Methods First, we performed an adjusted 1-stage random-effect meta-analysis to assess the combined associations of gestational age, birth weight, and infant weight gain with childhood asthma. Second, we performed an adjusted 2-stage random-effect meta-analysis to assess the associations of preterm birth (gestational age <37 weeks) and low birth weight (<2500 g) with childhood asthma outcomes. Results Younger gestational age at birth and higher infant weight gain were independently associated with higher risks of preschool wheezing and school-age asthma (P < .05). The inverse associations of birth weight with childhood asthma were explained by gestational age at birth. Compared with term-born children with normal infant weight gain, we observed the highest risks of school-age asthma in children born preterm with high infant weight gain (odds ratio [OR], 4.47; 95\% CI, 2.58-7.76). Preterm birth was positively associated with an increased risk of preschool wheezing (pooled odds ratio [pOR], 1.34; 95\% CI, 1.25-1.43) and school-age asthma (pOR, 1.40; 95\% CI, 1.18-1.67) independent of birth weight. Weaker effect estimates were observed for the associations of low birth weight adjusted for gestational age at birth with preschool wheezing (pOR, 1.10; 95\% CI, 1.00-1.21) and school-age asthma (pOR, 1.13; 95\% CI, 1.01-1.27). Conclusion Younger gestational age at birth and higher infant weight gain were associated with childhood asthma outcomes. The associations of lower birth weight with childhood asthma were largely explained by gestational age at birth."}, language = {en} } @article{HerpinAdolfiNicoletal.2013, author = {Herpin, Amaury and Adolfi, Mateus C. and Nicol, Barbara and Hinzmann, Maria and Schmidt, Cornelia and Klughammer, Johanna and Engel, Mareen and Tanaka, Minoru and Guiguen, Yann and Schartl, Manfred}, title = {Divergent Expression Regulation of Gonad Development Genes in Medaka Shows Incomplete Conservation of the Downstream Regulatory Network of Vertebrate Sex Determination}, series = {Molecular Biology and Evolution}, volume = {30}, journal = {Molecular Biology and Evolution}, number = {10}, doi = {10.1093/molbev/mst130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132262}, pages = {2328-2346}, year = {2013}, abstract = {Genetic control of male or female gonad development displays between different groups of organisms a remarkable diversity of "master sex-determining genes" at the top of the genetic hierarchies, whereas downstream components surprisingly appear to be evolutionarily more conserved. Without much further studies, conservation of sequence has been equalized to conservation of function. We have used the medaka fish to investigate the generality of this paradigm. In medaka, the master male sex-determining gene is dmrt1bY, a highly conserved downstream regulator of sex determination in vertebrates. To understand its function in orchestrating the complex gene regulatory network, we have identified targets genes and regulated pathways of Dmrt1bY. Monitoring gene expression and interactions by transgenic fluorescent reporter fish lines, in vivo tissue-chromatin immunoprecipitation and in vitro gene regulation assays revealed concordance but also major discrepancies between mammals and medaka, notably amongst spatial, temporal expression patterns and regulations of the canonical Hedgehog and R-spondin/Wnt/Follistatin signaling pathways. Examination of Foxl2 protein distribution in the medaka ovary defined a new subpopulation of theca cells, where ovarian-type aromatase transcriptional regulation appears to be independent of Foxl2. In summary, these data show that the regulation of the downstream regulatory network of sex determination is less conserved than previously thought.}, language = {en} } @article{ScheerSchmidtZachmannHuegleetal.1984, author = {Scheer, Ulrich and Schmidt-Zachmann, Marion S. and H{\"u}gle, Barbara and Franke, Werner W.}, title = {Identification and localization of a novel nucleolar protein of a high molecular weight by a monoclonal antibody}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39786}, year = {1984}, abstract = {A monoclonal murine antibody (No-I 14) is described which reacts specifically with a polypeptide of molecular weight (M,) 180000 present in low-speed nuclear pellets from oocytes and somatic cells of Xenopus laevis and X. borealis and in isolated amplified nucleoli. Two-dimensional gel electrophoresis has revealed the acidic nature of this polypeptide (isoelectric at pH of ca 4.2 in the presence of 9.5 M urea). A relatively large proportion of the protein is extracted at elevated ionic strength( i.e., at 0.4-0.5 M alkali salt) in a form sedimenting at approx. 7-8S , compatible with a monomeric state. It is also extracted by digestion with RNase but not with DNase. In immunofluorescence microscopy, antibody No-114 stains intensely nucleoli of oocytes and all somatic cells examined , including the residual nucleolar structure of Xenopus erythrocytes which are transcriptionally inactive. During mitosis the antigen does not remain associated with the nucleolar organizer regions (NOR) of chromosomes but is released and dispersed over the cytoplasm until telophase when it re-associates with the reforming interphase nucleoli. At higher resolution the immunofluorescent region is often resolved into a number of distinct subnucleolar components of varied size and shape. Immunoelectron microscopy using colloidal gold-coupled secondary antibodies reveals that the M, 180000 protein is confined to the dense fibrillar component of the nucleolus. This conclusion is also supported by its localization in the fibrillar part of segregated nucleoli of cells treated with actinomycin D. We conclude that nucleoli contain a prominent protein of M, 180000 which contributes to the general structure of the dense fibrillar component of the interphase nucleolus , independent of its specific transcriptional activity.}, language = {en} } @article{BielaszewskaSchillerLammersetal.2014, author = {Bielaszewska, Martina and Schiller, Roswitha and Lammers, Lydia and Bauwens, Andreas and Fruth, Angelika and Middendorf, Barbara and Schmidt, M. Alexander and Tarr, Phillip I. and Dobrindt, Ulrich and Karch, Helge and Mellmann, Alexander}, title = {Heteropathogenic virulence and phylogeny reveal phased pathogenic metamorphosis in Escherichia coli O2:H6}, series = {EMBO Molecular Medicine}, volume = {6}, journal = {EMBO Molecular Medicine}, number = {3}, issn = {1757-4684}, doi = {10.1002/emmm.201303133}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117254}, pages = {347-357}, year = {2014}, abstract = {Extraintestinal pathogenic and intestinal pathogenic (diarrheagenic) Escherichia coli differ phylogenetically and by virulence profiles. Classic theory teaches simple linear descent in this species, where non-pathogens acquire virulence traits and emerge as pathogens. However, diarrheagenic Shiga toxin-producing E.coli (STEC) O2:H6 not only possess and express virulence factors associated with diarrheagenic and uropathogenic E.coli but also cause diarrhea and urinary tract infections. These organisms are phylogenetically positioned between members of an intestinal pathogenic group (STEC) and extraintestinal pathogenic E.coli. STEC O2:H6 is, therefore, a 'heteropathogen,' and the first such hybrid virulent E.coli identified. The phylogeny of these E.coli and the repertoire of virulence traits they possess compel consideration of an alternate view of pathogen emergence, whereby one pathogroup of E.coli undergoes phased metamorphosis into another. By understanding the evolutionary mechanisms of bacterial pathogens, rational strategies for counteracting their detrimental effects on humans can be developed.}, language = {en} } @article{KroeberWengerSchwegleretal.2015, author = {Kroeber, Jana and Wenger, Barbara and Schwegler, Manuela and Daniel, Christoph and Schmidt, Manfred and Djuzenova, Cholpon S and Polat, B{\"u}lent and Flentje, Michael and Fietkau, Rainer and Distel, Luitpold V.}, title = {Distinct increased outliers among 136 rectal cancer patients assessed by \(\gamma\)H2AX}, series = {Radiation Oncology}, volume = {10}, journal = {Radiation Oncology}, number = {36}, doi = {10.1186/s13014-015-0344-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144085}, year = {2015}, abstract = {Background: In recent years attention has focused on \(\gamma\)H2AX as a very sensitive double strand break indicator. It has been suggested that \(\gamma\)H2AX might be able to predict individual radiosensitivity. Our aim was to study the induction and repair of DNA double strand breaks labelled by \(\gamma\)H2AX in a large cohort. Methods: In a prospective study lymphocytes of 136 rectal cancer (RC) patients and 59 healthy individuals were ex vivo irradiated (IR) and initial DNA damage was compared to remaining DNA damage after 2 Gy and 24 hours repair time and preexisting DNA damage in unirradiated lymphocytes. Lymphocytes were immunostained with anti-\(\gamma\)H2AX antibodies and microscopic images with an extended depth of field were acquired. \(\gamma\)H2AX foci counting was performed using a semi-automatic image analysis software. Results: Distinct increased values of preexisting and remaining \(\gamma\)H2AX foci in the group of RC patients were found compared to the healthy individuals. Additionally there are clear differences within the groups and there are outliers in about 12\% of the RC patients after ex vivo IR. Conclusions: The \(\gamma\)H2AX assay has the capability to identify a group of outliers which are most probably patients with increased radiosensitivity having the highest risk of suffering radiotherapy-related late sequelae.}, language = {en} } @article{WeberLassalleHaukeRamseretal.2018, author = {Weber-Lassalle, Nana and Hauke, Jan and Ramser, Juliane and Richters, Lisa and Groß, Eva and Bl{\"u}mcke, Britta and Gehrig, Andrea and Kahlert, Anne-Karin and M{\"u}ller, Clemens R. and Hackmann, Karl and Honisch, Ellen and Weber-Lassalle, Konstantin and Niederacher, Dieter and Borde, Julika and Thiele, Holger and Ernst, Corinna and Altm{\"u}ller, Janine and Neidhardt, Guido and N{\"u}rnberg, Peter and Klaschik, Kristina and Schroeder, Christopher and Platzer, Konrad and Volk, Alexander E. and Wang-Gohrke, Shan and Just, Walter and Auber, Bernd and Kubisch, Christian and Schmidt, Gunnar and Horvath, Judit and Wappenschmidt, Barbara and Engel, Christoph and Arnold, Norbert and Dworniczak, Bernd and Rhiem, Kerstin and Meindl, Alfons and Schmutzler, Rita K. and Hahnen, Eric}, title = {BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer}, series = {Breast Cancer Research}, volume = {20}, journal = {Breast Cancer Research}, doi = {10.1186/s13058-018-0935-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233433}, year = {2018}, abstract = {Background Germline mutations in the BRIP1 gene have been described as conferring a moderate risk for ovarian cancer (OC), while the role of BRIP1 in breast cancer (BC) pathogenesis remains controversial. Methods To assess the role of deleterious BRIP1 germline mutations in BC/OC predisposition, 6341 well-characterized index patients with BC, 706 index patients with OC, and 2189 geographically matched female controls were screened for loss-of-function (LoF) mutations and potentially damaging missense variants. All index patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germline testing and tested negative for pathogenic BRCA1/2 variants. Results BRIP1 LoF mutations confer a high OC risk in familial index patients (odds ratio (OR) = 20.97, 95\% confidence interval (CI) = 12.02-36.57, P < 0.0001) and in the subgroup of index patients with late-onset OC (OR = 29.91, 95\% CI = 14.99-59.66, P < 0.0001). No significant association of BRIP1 LoF mutations with familial BC was observed (OR = 1.81 95\% CI = 1.00-3.30, P = 0.0623). In the subgroup of familial BC index patients without a family history of OC there was also no apparent association (OR = 1.42, 95\% CI = 0.70-2.90, P = 0.3030). In 1027 familial BC index patients with a family history of OC, the BRIP1 mutation prevalence was significantly higher than that observed in controls (OR = 3.59, 95\% CI = 1.43-9.01; P = 0.0168). Based on the negative association between BRIP1 LoF mutations and familial BC in the absence of an OC family history, we conclude that the elevated mutation prevalence in the latter cohort was driven by the occurrence of OC in these families. Compared with controls, predicted damaging rare missense variants were significantly more prevalent in OC (P = 0.0014) but not in BC (P = 0.0693) patients. Conclusions To avoid ambiguous results, studies aimed at assessing the impact of candidate predisposition gene mutations on BC risk might differentiate between BC index patients with an OC family history and those without. In familial cases, we suggest that BRIP1 is a high-risk gene for late-onset OC but not a BC predisposition gene, though minor effects cannot be excluded.}, language = {en} } @article{WohlfarthSchmitteckertHaertleetal.2017, author = {Wohlfarth, Carolin and Schmitteckert, Stefanie and H{\"a}rtle, Janina D. and Houghton, Lesley A. and Dweep, Harsh and Fortea, Marina and Assadi, Ghazaleh and Braun, Alexander and Mederer, Tanja and P{\"o}hner, Sarina and Becker, Philip P. and Fischer, Christine and Granzow, Martin and M{\"o}nnikes, Hubert and Mayer, Emeran A. and Sayuk, Gregory and Boeckxstaens, Guy and Wouters, Mira M. and Simr{\´e}n, Magnus and Lindberg, Greger and Ohlsson, Bodil and Schmidt, Peter Thelin and Dlugosz, Aldona and Agreus, Lars and Andreasson, Anna and D'Amato, Mauro and Burwinkel, Barbara and Bermejo, Justo Lorenzo and R{\"o}th, Ralph and Lasitschka, Felix and Vicario, Maria and Metzger, Marco and Santos, Javier and Rappold, Gudrun A. and Martinez, Cristina and Niesler, Beate}, title = {miR-16 and miR-103 impact 5-HT4 receptor signalling and correlate with symptom profile in irritable bowel syndrome}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-13982-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173478}, year = {2017}, abstract = {Irritable bowel syndrome (IBS) is a gut-brain disorder involving alterations in intestinal sensitivity and motility. Serotonin 5-HT4 receptors are promising candidates in IBS pathophysiology since they regulate gut motor function and stool consistency, and targeted 5-HT4R selective drug intervention has been proven beneficial in subgroups of patients. We identified a single nucleotide polymorphism (SNP) (rs201253747) c.*61 T > C within the 5-HT4 receptor gene \(HTR4\) to be predominantly present in diarrhoea-IBS patients (IBS-D). It affects a binding site for the miR-16 family and miR-103/miR-107 within the isoforms \({HTR4b/i}\) and putatively impairs \(HTR4\) expression. Subsequent miRNA profiling revealed downregulation of miR-16 and miR-103 in the jejunum of IBS-D patients correlating with symptoms. \(In\) \(vitro\) assays confirmed expression regulation via three 3′UTR binding sites. The novel isoform \(HTR4b\_2\) lacking two of the three miRNA binding sites escapes miR-16/103/107 regulationin SNP carriers. We provide the first evidence that \(HTR4\) expression is fine-tuned by miRNAs, and that this regulation is impaired either by the SNP c.*61 T > C or bydiminished levels of miR-16 and miR-103 suggesting that \(HTR4\) might be involved in the development of IBS-D.}, language = {en} } @article{KimpelSchindlerSchmidtPenningtonetal.2023, author = {Kimpel, Otilia and Schindler, Paul and Schmidt-Pennington, Laura and Altieri, Barbara and Megerle, Felix and Haak, Harm and Pittaway, James and Dischinger, Ulrich and Quinkler, Marcus and Mai, Knut and Kroiss, Matthias and Polat, B{\"u}lent and Fassnacht, Martin}, title = {Efficacy and safety of radiation therapy in advanced adrenocortical carcinoma}, series = {British Journal of Cancer}, volume = {128}, journal = {British Journal of Cancer}, number = {4}, doi = {10.1038/s41416-022-02082-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324411}, pages = {586-593}, year = {2023}, abstract = {Background International guidelines emphasise the role of radiotherapy (RT) for the management of advanced adrenocortical carcinoma (ACC). However, the evidence for this recommendation is very low. Methods We retrospectively analysed all patients who received RT for advanced ACC in five European centres since 2000. Primary endpoint: time to progression of the treated lesion (tTTP). Secondary endpoints: best objective response, progression-free survival (PFS), overall survival (OS), adverse events, and the establishment of predictive factors by Cox analyses. Results In total, 132 tumoural lesions of 80 patients were treated with conventional RT (cRT) of 50-60 Gy (n = 20) or 20-49 Gy (n = 69), stereotactic body RT of 35-50 Gy (SBRT) (n = 36), or brachytherapy of 12-25 Gy (BT) (n = 7). Best objective lesional response was complete (n = 6), partial (n = 52), stable disease (n = 60), progressive disease (n = 14). Median tTTP was 7.6 months (1.0-148.6). In comparison to cRT\(_{20-49Gy}\), tTTP was significantly longer for cRT\(_{50-60Gy}\) (multivariate adjusted HR 0.10; 95\% CI 0.03-0.33; p < 0.001) and SBRT (HR 0.31; 95\% CI 0.12-0.80; p = 0.016), but not for BT (HR 0.66; 95\% CI 0.22-1.99; p = 0.46). Toxicity was generally mild and moderate with three grade 3 events. No convincing predictive factors could be established. Conclusions This largest published study on RT in advanced ACC provides clear evidence that RT is effective in ACC.}, language = {en} } @article{JockelSchneiderSchlagenhaufPetsosetal.2021, author = {Jockel-Schneider, Yvonne and Schlagenhauf, Ulrich and Petsos, Hari and R{\"u}ttermann, Stefan and Schmidt, Jana and Ziebolz, Dirk and Wehner, Christian and Laky, Markus and Rott, Thea and Noack, Michael and Noack, Barbara and Lorenz, Katrin}, title = {Impact of 0.1\% octenidine mouthwash on plaque re-growth in healthy adults: a multi-center phase 3 randomized clinical trial}, series = {Clinical Oral Investigations}, volume = {25}, journal = {Clinical Oral Investigations}, number = {7}, issn = {1432-6981}, doi = {10.1007/s00784-021-03781-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307629}, pages = {4681-4689}, year = {2021}, abstract = {Objectives To investigate plaque inhibition of 0.1\% octenidine mouthwash (OCT) vs. placebo over 5 days in the absence of mechanical plaque control. Materials and methods For this randomized, placebo-controlled, double-blind, parallel group, multi-center phase 3 study, 201 healthy adults were recruited. After baseline recording of plaque index (PI) and gingival index (GI), collection of salivary samples, and dental prophylaxis, subjects were randomly assigned to OCT or placebo mouthwash in a 3:1 ratio. Rinsing was performed twice daily for 30 s. Colony forming units in saliva were determined before and after the first rinse. At day 5, PI, GI, and tooth discoloration index (DI) were assessed. Non-parametric van Elteren tests were applied with a significance level of p < 0.05. Results Treatment with OCT inhibited plaque formation more than treatment with placebo (PI: 0.36 vs. 1.29; p < 0.0001). OCT reduced GI (0.04 vs. placebo 0.00; p = 0.003) and salivary bacterial counts (2.73 vs. placebo 0.24 lgCFU/ml; p < 0.0001). Tooth discoloration was slightly higher under OCT (DI: 0.25 vs. placebo 0.00; p = 0.0011). Mild tongue staining and dysgeusia occurred. Conclusions OCT 0.1\% mouthwash inhibits plaque formation over 5 days. It therefore can be recommended when regular oral hygiene is temporarily compromised. Clinical relevance When individual plaque control is compromised, rinsing with octenidine mouthwash is recommended to maintain healthy oral conditions while side effects are limited.}, language = {en} } @article{DoerkPeterlongoMannermaaetal.2019, author = {D{\"o}rk, Thilo and Peterlongo, Peter and Mannermaa, Arto and Bolla, Manjeet K. and Wang, Qin and Dennis, Joe and Ahearn, Thomas and Andrulis, Irene L. and Anton-Culver, Hoda and Arndt, Volker and Aronson, Kristan J. and Augustinsson, Annelie and Beane Freeman, Laura E. and Beckmann, Matthias W. and Beeghly-Fadiel, Alicia and Behrens, Sabine and Bermisheva, Marina and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Brauch, Hiltrud and Brenner, Hermann and Burwinkel, Barbara and Canzian, Federico and Chan, Tsun L. and Chang-Claude, Jenny and Chanock, Stephen J. and Choi, Ji-Yeob and Christiansen, Hans and Clarke, Christine L. and Couch, Fergus J. and Czene, Kamila and Daly, Mary B. and dos-Santos-Silva, Isabel and Dwek, Miriam and Eccles, Diana M. and Ekici, Arif B. and Eriksson, Mikael and Evans, D. Gareth and Fasching, Peter A. and Figueroa, Jonine and Flyger, Henrik and Fritschi, Lin and Gabrielson, Marike and Gago-Dominguez, Manuela and Gao, Chi and Gapstur, Susan M. and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Goldberg, Mark S. and Goldgar, David E. and Guen{\´e}l, Pascal and Haeberle, Lothar and Haimann, Christopher A. and H{\aa}kansson, Niclas and Hall, Per and Hamann, Ute and Hartman, Mikael and Hauke, Jan and Hein, Alexander and Hillemanns, Peter and Hogervorst, Frans B. L. and Hooning, Maartje J. and Hopper, John L. and Howell, Tony and Huo, Dezheng and Ito, Hidemi and Iwasaki, Motoki and Jakubowska, Anna and Janni, Wolfgang and John, Esther M. and Jung, Audrey and Kaaks, Rudolf and Kang, Daehee and Kapoor, Pooja Middha and Khusnutdinova, Elza and Kim, Sung-Won and Kitahara, Cari M. and Koutros, Stella and Kraft, Peter and Kristensen, Vessela N. and Kwong, Ava and Lambrechts, Diether and Le Marchand, Loic and Li, Jingmei and Lindstr{\"o}m, Sara and Linet, Martha and Lo, Wing-Yee and Long, Jirong and Lophatananon, Artitaya and Lubiński, Jan and Manoochehri, Mehdi and Manoukian, Siranoush and Margolin, Sara and Martinez, Elena and Matsuo, Keitaro and Mavroudis, Dimitris and Meindl, Alfons and Menon, Usha and Milne, Roger L. and Mohd Taib, Nur Aishah and Muir, Kenneth and Mulligan, Anna Marie and Neuhausen, Susan L. and Nevanlinna, Heli and Neven, Patrick and Newman, William G. and Offit, Kenneth and Olopade, Olufunmilayo I. and Olshan, Andrew F. and Olson, Janet E. and Olsson, H{\aa}kan and Park, Sue K. and Park-Simon, Tjoung-Won and Peto, Julian and Plaseska-Karanfilska, Dijana and Pohl-Rescigno, Esther and Presneau, Nadege and Rack, Brigitte and Radice, Paolo and Rashid, Muhammad U. and Rennert, Gad and Rennert, Hedy S. and Romero, Atocha and Ruebner, Matthias and Saloustros, Emmanouil and Schmidt, Marjanka K. and Schmutzler, Rita K. and Schneider, Michael O. and Schoemaker, Minouk J. and Scott, Christopher and Shen, Chen-Yang and Shu, Xiao-Ou and Simard, Jaques and Slager, Susan and Smichkoska, Snezhana and Southey, Melissa C. and Spinelli, John J. and Stone, Jennifer and Surowy, Harald and Swerdlow, Anthony J. and Tamimi, Rulla M. and Tapper, William J. and Teo, Soo H. and Terry, Mary Beth and Toland, Amanda E. and Tollenaar, Rob A. E. M. and Torres, Diana and Torres-Mej{\´i}a, Gabriela and Troester, Melissa A. and Truong, Th{\´e}r{\`e}se and Tsugane, Shoichiro and Untch, Michael and Vachon, Celine M. and van den Ouweland, Ans M. W. and van Veen, Elke M. and Vijai, Joseph and Wendt, Camilla and Wolk, Alicja and Yu, Jyh-Cherng and Zheng, Wei and Ziogas, Argyrios and Ziv, Elad and Dunnig, Alison and Pharaoh, Paul D. P. and Schindler, Detlev and Devilee, Peter and Easton, Douglas F.}, title = {Two truncating variants in FANCC and breast cancer risk}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, organization = {ABCTB Investigators, NBCS Collaborators}, doi = {10.1038/s41598-019-48804-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222838}, year = {2019}, abstract = {Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95\%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.}, language = {en} }